• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

银杏生物量分配格局及异速生长模型

刘坤, 曹林, 汪贵斌, 曹福亮

刘坤, 曹林, 汪贵斌, 曹福亮. 银杏生物量分配格局及异速生长模型[J]. 北京林业大学学报, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374
引用本文: 刘坤, 曹林, 汪贵斌, 曹福亮. 银杏生物量分配格局及异速生长模型[J]. 北京林业大学学报, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374
LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374
Citation: LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374

银杏生物量分配格局及异速生长模型

基金项目: 

南京林业大学优秀博士论文创新基金 

林业公益性行业科研专项 201504105

详细信息
    作者简介:

    刘坤,博士生。主要研究方向:森林培育。Email:vaguelk@outlook.com  地址:210037 江苏省南京市龙蟠路159号南京林业大学林学院

    责任作者:

    曹林,讲师。主要研究方向:林业遥感。Email: ginkgocao@gmail.com  地址:同上

  • 中图分类号: S792.95

Biomass allocation patterns and allometric models of Ginkgo biloba

  • 摘要: 以苏北地区银杏人工林为研究对象,选取13株进行整株挖掘,分析不同器官生物量的分配格局,以及地上和地下生物量之间的关系;再分别以胸径(D)、树高(H)、D2HDaHb为自变量建立银杏各器官生物量模型,选择调整决定系数(Radj2)、残差平方和(SSE)、平均偏差(ME)、平均绝对偏差(MAE)和平均相对误差(MPE)作为选择最优模型的检验指标,根据检验结果筛选出各器官的最优模型。结果表明:13株银杏的整株生物量变化范围为28.50~320.27 kg,树干生物量占总生物量的49.4%~56.6%,树枝生物量占总生物量的12.1%~18.9%,树叶生物量占总生物量的3.8%~5.5%,根生物量占总生物量的26%;地上部分生物量与地下生物量线性方程的斜率为0.35,具有显著的线性相关性(P<0.01);枝和叶生物量都集中于树冠中部,树冠上层和下层的枝、叶生物量明显低于树冠中层生物量(P<0.05),上层和下层生物量之间差异不显著(P>0.05),70%根生物量集中0~1.0 m的土层;枝水平上,基于基径和枝长的枝生物量模型解释量超过95%;在各器官生物量最优模型选择上,以D为自变量的W=aDb的叶、枝、地上部分生物量模型要优于其他模型;树干、根和全株生物量则是以W=aDbHc模型最优。银杏各器官生物量表现为干>根>枝>叶,枝和叶生物量垂直分配上,中冠层占最大比例;基于树高和胸径的相对生长模型可以实现对银杏各器官生物量的准确拟合,银杏生物量及碳储量的有效估算。
    Abstract: Based on the Ginkgo biloba plantation in northern area of Jiangsu Province, eastern China, 13 sample trees with different diameters at breast height (DBH) were selected, and used to analyze the relationships between above- and below-ground biomass and their allocation patterns. At the individual tree level, allometric models for each component biomass were developed based on independent variables of DBH, tree height (H), D2H and DaHb. The best fitting models were identified by the fitting and test results of parameter estimation, the statistical parameters used in this paper were adjusted determination coefficient (Radj2), sum of squares for error (SSE), statistics estimating the standard deviation SEE, mean relative deviation (ME), mean relative deviation absolute (MAE), mean estimated error (MPE). The results showed that the whole variation range for plant biomass of the 13 ginkgo trees was 28.50-320.27 kg for each tree. Relative proportions of stem, branch, leaf, and root to total tree biomass were 49.4%-56.6%, 12.1%-18.9%, 3.8%-5.5%, and 26%, respectively. The aboveground biomass was significantly linearly correlated with belowground biomass. The slope of the fitted linear model was 0.35. Results showed that the majority leaf and branch biomass occurred in the middle canopy layers, with significant difference between the middle, upper and lower layers in combined biomass of leaves and branches, and there was no significance between upper and lower layers. For all sample trees, about 70% of roots were observed in the 0-1.0 m soil layer. With soil depth increasing, the root biomass decreased exponentially. At branch level, allometric models based on two variables (i.e. BD and BL) of branch biomass explained more than 95% of the variations in data. The results showed that D was a best independent variable in estimating the biomass of leaf, branch, aboveground section than the rest variables, and D-H was the best in estimating stem, root and total tree biomass. The mean value of proportion of different biomass components showed an order of stem > root > branch > leaf. The middle canopy layers occupied the maximum ratio in vertical and horizontal distribution of branch and leaf biomass, and these results were in consistence with the isometric biomass allocation theory. Allometric models based on independent variables of DBH, and H would be suitable for predicting the above- and below-ground component biomass of ginkgo, and the calculation of ginkgo biomass and carbon storage.
  • 杨树(Populus spp.)是东北地区农田防护林主要造林树种之一, 具有生长迅速、适应力强、容易繁殖、能尽早地发挥防护效益和经济效益等优点,但也存在着胁地面积大,使林带附近的农作物生长不良而造成减产等问题。引起林带胁地的2个主要原因是林木根系吸水和林带遮荫。而在东北地区,由于树木根系的吸收作用,使林带两侧的土壤水分、空气湿度、土壤养分等因子发生不利于农作物生长的变化是林带胁地的主要原因[1]

    为解决林带胁地问题,国内外学者做了很多有关方面的研究,并提出切根贴膜、挖沟断根、以松(Pinus spp.)改杨、物质补给、胁地盈留及林木修枝等解决措施[2-5]。其中,切根贴膜技术是解决东北地区林带胁地问题最有效的方法。切根贴膜通常是在距树干0.5~2 m处开一条深60~80 cm的沟,然后在沟壁一侧(靠近林带一侧)贴上一层厚约40 μm, 长度一定(林带长度)的塑料薄膜, 最后将土回填。切根贴膜技术有效的阻止了树木根系的水平延伸,在林带胁地范围内, 该项措施可使粮豆平均增产近50%,每公顷年均粮食产量提高了1 336.7 kg[6]。在目前研究中,人们更多关注的是切根贴膜技术的增产效果,却忽视了该技术对林带生长及光合生理特性等方面的影响。

    林带切根贴膜后,林木根系遭到了损伤,水平延伸受到限制,吸收水分和养分的范围减小,可能会使林木处于水分亏缺状态。当植物受到干旱胁迫时,叶片作为高等植物光合作用的活动中心,也是植物对环境最为敏感的器官,可通过形态、结构和生理上的变化来抵御或减轻干旱损伤[7-9]。目前,切根贴膜技术对农田防护林光合生理特性及解剖结构特征的影响尚不明确,切根贴膜距离尚没有统一规范且缺乏理论支持。本文以黑龙江省黑土区农田防护林杨树为研究对象,研究不同切根贴膜距离对杨树叶片的光合生理特性、气孔形态特征和叶绿体超微结构的影响,旨在为切根贴膜技术的科学应用提供理论参考。

    试验地位于黑龙江省拜泉县丰产乡长安村(47°63′ N、东经125°86′ E),地处小兴安岭余脉向松嫩平原过渡地带,属东北黑土漫岗区。中温带大陆性季风气候,年均降水量490 mm,年均蒸发量1 334 mm,年均气温1.2 ℃,年均日照2 730 h,全年无霜期122 d。土壤类型主要为黑土、黑钙土和草甸土,土壤质地为轻黏土,土壤pH 6.52,有机质含量48.25 g/kg,碱解氮136.5 mg/kg,有效磷31.7 mg/kg,速效钾211.5 mg/kg。

    试验选取的农田防护林树种为小黑杨(Populus simonii × P. nigra)。林带南北走向,2009年春季定植,苗木规格为2年生根1年生干。林带共3行,株行距为2 m×3 m,平均胸径(8.6±1.8) cm、平均树高(7.2±0.9) m、冠幅(东西×南北)3.6 m×2.8 m。试验于2015年5月末进行,采用对比试验设计,重复3次,每个小区30株树(10株×3株),小区之间设置2行保护行。试验共设4个处理,自北向南依次为:1)C0.5是在林带西侧树干50 cm处,开深80 cm、宽30 cm、长约20 m(10棵试验树木株距)的沟,然后用长约20 m、宽1 m、厚0.04 mm的塑料薄膜在沟内靠林带一边侧放, 并立即埋土填沟, 恢复地面原样。2)CK是未切根贴膜处理。3)C1是距树干1 m处切根贴膜。4)C2是距树干2 m处切根贴膜。详见图 1

    图  1  试验设置图
    Figure  1.  Experimental design of poplar shelterbelts

    2015年7—9月,于每个月初晴朗无云的上午09:00—11:00之间,采用Li-6400便携式光合系统分析仪(美国Li-COR公司产)测定试验地平均标准木叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、细胞间隙CO2浓度(Ci)等生理指标。计算叶片水分利用效率(WUE=Pn/Tr)和气孔限制值(Ls=1-Ci/Ca, 式中:Ca为空气环境的CO2浓度)。每个处理在林带外侧(贴膜一侧)中部选3株平均标准木进行测定。为了减少因测定时间所引起的误差,每一处理的3株标准木采用首尾相接的方法循环测定,由于树木高大,采用取样枝的方法测定各项指标。每次均随机在树冠外围向阳面中上部剪下1个枝条插入水瓶中[10],选取4片成熟叶片,在自然光源下测定,测定过程中使叶片、量子传感器与日光保持垂直,CO2浓度为外界浓度。待系统稳定后,每一叶片读数重复3次。

    取样时间及所取材料与光合特征参数所测树木一致。剪取树冠外围向阳面中上部1个枝条,取1片(枝条顶端起第5片)成熟叶作为供试材料,在叶片中部主脉旁取材(3 mm×3 mm),置于2.5%戊二醛溶液固定24 h,用磷酸缓冲液漂洗4次,经过乙醇梯度脱水、乙酸异戊酯置换、临界点干燥后将样品粘在样品台上,置Eiko IB-3离子溅射仪中进行导电处理,在日立S-4800型扫描电镜下观察上、下表皮气孔形态特征,选取典型视野照相。统计单位视野内的气孔数目,计算气孔密度;利用电镜软件测量气孔(保卫细胞)的长度(纵轴长)和宽度(横轴长),每片叶随机观察5个视野。

    与气孔形态特征观察所取材料一致,在叶片中部主脉旁取材(1 mm×2 mm),置于2.5%戊二醛溶液固定后带回试验室。样品经磷酸缓冲液漂洗4次后转入1%的锇酸固定液中固定2 h,再入磷酸缓冲液冲洗3次,经乙醇梯度脱水后,转入Epon 812环氧树脂内渗透和包埋。用Leica EM-UC6型超薄切片机切片(切片厚度50~60 nm),经醋酸铀和柠檬酸铅对切片双重染色后,置日立H-7650型透射电镜下观察并拍照。

    应用Excel软件进行数据分析以及图表绘制,应用SPSS19.0软件对试验数据进行单因素方差分析,新复极差法(Duncan,α=0.05)进行显著性多重比较检验。

    切根贴膜1个月后,小黑杨叶片的净光合速率、气孔导度和蒸腾速率显著下降,下降幅度随切根距离减小而增大(表 1)。C0.5~C2处理的Pn较CK分别下降43.30%、29.56%和14.86%,处理间差异显著;水分利用效率C0.5和C1处理较CK明显提高,C2处理较CK无明显变化。

    表  1  切根贴膜处理对杨树叶片光合生理特性的影响
    Table  1.  Effects of root excision mulched with plastic film treatments on photosynthetic characteristics of poplar leaves
    月份
    Month
    处理
    Treatment
    Pn/(μmol·m-2·s-1)GS/(mmol·m-2·s-1)Ci/(μmol·mol-1)Tr/(mmol·m-2·s-1)LsWUE/(μmol·mmol-1)
    7CK17.76±2.22a266.46±35.05a206.80±6.93a6.36±0.60a0.43±0.02b2.79±0.16b
    C0.510.07±0.98d124.72±8.71d199.47±13.84a3.41±0.12d0.45±0.04b2.96±0.23a
    C112.51±1.96c148.52±30.06c187.92±6.12b4.07±0.63c0.48±0.02a3.08±0.10a
    C215.12±0.62b218.62±29.62b203.54±11.45a5.55±0.52b0.43±0.03b2.74±0.19b
    8CK12.57±1.39a184.43±29.15a226.86±21.27a6.21±0.84a0.41±0.06bc2.03±0.23a
    C0.59.69±2.07b130.03±15.85b220.60±22.79a5.55±0.75b0.42±0.04bc1.83±0.20a
    C110.35±2.39b138.09±20.98b212.42±26.63a6.09±0.58a0.44±0.06ab1.72±0.19b
    C211.08±1.23b139.31±19.35b194.16±26.81b6.01±0.53a0.48±0.07a1.93±0.19a
    9CK13.11±1.10a271.17±21.54a255.79±18.80a7.40±1.77a0.32±0.04a1.84±0.16a
    C0.512.05±1.62a234.24±23.05b253.65±21.47a6.27±1.28b0.32±0.03a1.98±0.17a
    C112.13±1.42a217.43±24.80c246.70±26.14a6.77±1.93ab0.35±0.03a1.86±0.09a
    C212.31±1.01a229.24±19.62bc250.64±26.30a7.59±1.39a0.34±0.02a1.65±0.11b
    注:7、8、9月份分别为切根贴膜后的第1、2、3个月, 数据为平均值±标准差,同一月份中同列不同字母代表处理间差异显著(P<0.05)。下同。Notes:July, August and September are the 1st, 2nd and 3rd month after root excision, respectively; Data represent mean standard ± deviation, different letters in the same month and column indicate significant difference among treatments at P<0.05 level. The same as below.
    下载: 导出CSV 
    | 显示表格

    切根贴膜2个月后,小黑杨叶片的净光合速率、气孔导度和蒸腾速率依然低于对照。C0.5~C2处理的Pn较CK分别下降22.91%、17.66%和11.85%,差异显著;水分利用效率均低于CK,除C1处理外未达到显著水平。

    切根贴膜3个月后,C0.5~C2处理的Pn较CK分别下降8.08%、7.48%和6.10%,差异不显著;气孔导度仍明显低于CK,蒸腾速率除C0.5处理仍明显低于CK外,C1和C2处理较CK无明显差异;水分利用效率C0.5和C1处理略高于CK,差异不显著,C2处理则明显低于CK。

    生长旺季内(7—9月),切根贴膜处理后的小黑杨叶片气孔限制值较CK呈增加趋势,胞间CO2浓度变化趋势与气孔导度一致,说明净光合速率的下降是由气孔限制因素引起的。

    扫描电镜观察发现,气孔在小黑杨叶片的上下表皮均有分布,CK小黑杨叶片上表皮气孔数量相对较少,表面无蜡质纹饰。皮气孔数量相对较多,部分气孔周围有条索状纹饰(图 2A~2C), 膜处理后的小黑杨叶片气孔特征与对照相比无明显差异(图 2D~2F)。

    图  2  切根贴膜处理对杨树叶片气孔特征的影响
    A.处理的上表皮,500×;B.处理的下表皮,500×;C.处理的下表皮,2000×;D.贴膜处理的上表皮(以8月C0.5处理为例);E.贴膜处理的下表皮(以8月C0.5处理为例);F.贴膜处理的下表皮(以8月C0.5处理为例)2000×。
    Figure  2.  Effects of root excision mulched with plastic film treatments on stomatal characteristics of poplar leaves
    A, daxial-CK, 500×; B, baxial-CK, ×500;C, baxial-CK, 2000×; D, daxial-C0.5, 500×(taking treatment in August as an example); E, baxial-C0.5, 500×(taking treatment in August as an example); F, axial-C0.5, 2000×(taking treatment in August as an example).

    生长旺季(7—9月)内小黑杨叶片上表皮气孔密度逐渐上升,叶片下表皮气孔密度呈先上升后略微下降趋势(表 2)。在7—8月,C0.5~C2处理的上表皮气孔密度平均值较CK分别下降约52.5%和23.3%,差异显著,不同程度切根贴膜处理间无明显差异;9月C0.5处理的上表皮气孔密度较CK下降19.9%,仍明显低于CK,而C1和C2处理的上表皮气孔密度略低于CK,差异未达到显著水平。C0.5~C2处理的下表皮气孔密度平均值在7月较CK下降约9.1%,8—9月较CK分别上升约15.1%和12.7%,差异显著,而C0.5~C2处理间无明显差异。

    表  2  切根贴膜处理对杨树叶片气孔特征参数的影响
    Table  2.  Effects of root excision mulched with plastic film treatments on stomatal characteristic parameters of poplar leaves
    月份
    Month
    处理
    Treatment
    气孔密度/(个·mm-2)
    Density/(number·mm-2)
    气孔长度Stomata length/μm气孔宽度Stomata width/μm
    上表皮Adaxial下表皮Abaxial上表皮Adaxial下表皮Abaxial上表皮Adaxial下表皮Abaxial
    7CK19.3±1.9a136.9±24.4a24.2±3.1a27.9±3.9a15.1±2.8a16.3±3.2a
    C0.59.7±1.7b125.2±17.9b23.7±3.8a25.2±3.9b14.4±2.9a15.9±3.0a
    C19.5±1.5b125.0±12.5b22.8±3.9a26.8±3.8b14.5±2.4a16.2±3.1a
    C28.3±1.1b123.2±16.8b23.6±3.5a27.2±4.0ab14.4±2.6a15.8±3.1a
    8CK22.0±2.0a157.4±7.6b25.0±3.2a24.4±4.1a14.8±2.3a15.2±2.9a
    C0.517.3±1.1b174.9±10.2a25.6±3.5a22.4±4.8c15.2±2.3a14.6±2.7b
    C117.3±1.2b186.0±26.8a26.0±4.1a23.0±3.9bc15.3±2.5a14.6±2.7b
    C216.0±2.3b168.2±8.7a24.8±4.0a23.6±4.0b15.6±2.1a14.9±2.9ab
    9CK33.2±3.0a151.0±4.6b24.2±4.2a23.3±3.9a14.0±2.4a14.4±2.8a
    C0.526.6±1.2b168.8±25.8a23.2±2.1a21.0±4.0c14.9±2.0a13.3±2.6b
    C129.9±2.0ab168.2±8.7a23.5±2.7a21.6±3.6bc14.5±2.5a13.4±2.3b
    C231.2±1.1a173.6±7.1a22.9±4.3a22.0±3.4b14.0±2.4a13.5±2.6b
    下载: 导出CSV 
    | 显示表格

    切根贴膜处理后的小黑杨叶片上表皮气孔大小(长度×宽度)在生长季内与CK相比无明显差异。小黑杨叶片下表皮气孔大小在生长季内逐渐减小,在7—9月,C0.5处理的下表皮气孔长度较CK分别减小9.7%、8.2%和9.9%,C1处理的下表皮气孔长度较CK分别减小3.9%、5.7%和7.3%,C2处理的下表皮气孔长度较CK分别减小2.5%、3.3%和5.6%;除7月C2处理未达到显著水平外,其他处理均明显低于CK。可见,切根贴膜距树干距离越近,叶片下表皮气孔长度越小,随着处理时间的延长,叶片气孔长度较CK差异越大。C0.5~C2处理的下表皮气孔宽度在生长季内逐渐小于CK,C0.5和C1处理的下表皮气孔宽度在8—9月明显低于CK,而C2处理的下表皮气孔宽度也在9月显著低于CK。

    正常条件下,7月小黑杨的叶肉细胞中叶绿体紧贴细胞壁分布,多呈梭形或椭球形,叶绿体中淀粉粒清晰可见。基质中嗜锇颗粒数量较少(图 3A1)。8月小黑杨的叶绿体结构与7月相比变化不大,叶绿体片层清晰,排列整齐,基质中嗜锇颗粒数量有增加趋势(图 3A2)。9月小黑杨的叶绿体结构基本呈正常形态,但叶绿体与细胞壁相邻面积减小,出现质壁分离现象(图 3A3)。

    图  3  切根贴膜处理对杨树叶片叶绿体超微结构的影响
    A1~A3.7—9月对照处理;B1~B3.7—9月C0.5处理;C1~C3.7—9月C1处理;D1~D3.7—9月C2处理;CP.叶绿体;SG.淀粉粒;N.细胞核;W.细胞壁; O.嗜锇颗粒。
    Figure  3.  Effects of root excision mulched with plastic film treatments on the ultrastructure of chloroplasts of poplar leaves
    A1-A3,control treatment in July to September;B1-B3,C0.5 treatment in July to September;C1-C3,C1 treatment in July to September;D1-D3,C2 treatment in July to September; CP,chloroplasts;SG,starch grain;N,nucleus;W,cell wall; O,osmiophilic granules.

    小黑杨经切根贴膜处理1个月后,与CK相比,其叶肉细胞内的叶绿体轻微膨胀,淀粉粒大小明显变小,数量减少(图 3B1~3D1)。C0.5处理的叶绿体片层变稀薄模糊,出现明显的质壁分离现象,基质中嗜锇颗粒数量大量增加(图 3B1);C1处理的类囊体略有膨胀,叶绿体片层空间变大,出现较小的透明腔,少部分片层出现轻微扭曲的现象,嗜锇颗粒数量增加(图 3C1);C2处理的叶绿体结构与CK相比无明显变化(图 2D1)。小黑杨经切根贴膜处理2个月后,除C0.5处理的嗜锇体数量和体积较CK增加外(图 3B2),其他处理的叶肉细胞内叶绿体结构与CK差异不明显(图 3C23D2),C2处理的淀粉粒数量有增加现象(图 3D2)。小黑杨经切根贴膜处理3个月后,C1和C2处理的叶绿体中淀粉粒的数量和体积明显增加(图 3C33D3),叶肉细胞内的叶绿体与其他结构CK相比已无明显差异(图 3B3~3D3)。

    Pezeshki等[11]研究发现,断根能降低植物的光合作用。主要是由于断根造成植株根系生物量下降,在一段时间内吸收不到足够的水养,植株的光合速率随着断根程度的加重相应降低[12]。本研究得出相似结论。切根贴膜1个月后的杨树净光合速率显著下降,下降幅度随着断根强度的加大而增加。这可能是由于切根贴膜处理后的杨树处于干旱胁迫状态,根系将水力信号和化学信号传导到叶片,引起气孔关闭,气孔阻力升高,蒸腾速率下降导致光合速率降低[13]。切根贴膜距离树干位置越近,根系损伤越大,气孔导度和蒸腾速率下降越明显。切根贴膜2个月后的杨树净光合速率仍明显低于对照,但降低幅度有所减小。切根贴膜3个月后,杨树叶片的净光合速率略低于对照,未达到显著水平。应是经过一段时间的恢复,各断根处理的切口处萌发出新根,扩大了根系吸收面积,从而使水分吸收增加,可以推测光合速率的升高取决于新根的出现。

    光合作用与植物的生长状况密切相关。一般将影响植物光合作用的因子分为气孔因子和非气孔因子。Farquhar等[14]认为,判断光合作用下降的主要原因,要看GsCi的变化规律是否相同。如果光合速率下降时,GsCi同时降低,则气孔限制是植物光合速率降低的主要原因;如果Gs下降时Ci升高,则说明光合速率的下降主要是由非气孔限制引起的。本研究中,切根贴膜处理后的杨树叶片气孔限制值增大,气孔导度和胞间CO2含量同时下降,说明气孔限制因素是处理后杨树净光合速率下降的主要原因,这与植物在受到轻度干旱胁迫时的光合参数变化规律一致。

    气孔能够影响植物的光合作用,叶片单位面积上气孔数量的多少与植物的净光合速率、蒸腾速率和气孔导度等直接相关[15]。前人研究表明,气孔密度随着干旱胁迫程度的增加逐渐上升[16-17]。一些学者发现中度干旱胁迫能够促进植物单位叶面积上气孔数量的增加,而重度干旱胁迫则会降低植物的气孔密度[18-19]。本研究中,切根贴膜处理后的杨树叶片上下表皮气孔密度在7月均明显降低。可能是由于断根使杨树处于水分亏缺状态,影响了叶片气孔的发育,较少的气孔数量大幅度降低了由气孔引起的蒸腾作用,这样更有利于植物适应不利的环境条件。随后,叶片气孔密度不断增加,下表皮气孔密度在8—9月已明显高于对照,这可能是由于干旱胁迫降低了植物叶片生长速度,单位叶面积上的气孔数量因此提高,也可能是切根贴膜促进了气孔发育,直接增加了气孔数量。随着树木根系的恢复,水分吸收增加,单位面积上的气孔数目增多有利于提高净光合速率[20-21]

    叶绿体是光合作用的主要场所。在正常条件下,小黑杨叶肉细胞中叶绿体紧贴细胞壁分布,叶绿体中含有大量的淀粉粒, 用以叶片生长或作为物质贮备供给植株营养[22]。切根贴膜处理1个月后,小黑杨叶绿体超微结构受到明显影响,随着断根强度的加大,叶绿体发生膨胀,有明显质壁分离现象,叶绿体片层模糊,淀粉粒体积变小,数量减少,嗜锇颗粒数量大量增加。叶绿体中淀粉粒的降解、嗜锇颗粒的增加说明植物体对胁迫采取了积极的防御措施,促进淀粉粒降解,合成更多的有机溶质,以调节渗透压[23]。叶绿体中淀粉粒的多少与植物光合作用及其他代谢能力有紧密联系,一定程度上能够反映植株的生长状况及胁迫后的恢复情况[24]。本研究发现,C1C2处理在切根贴膜3个月后叶绿体中淀粉粒的数量和体积有明显增加现象,说明当距树干≥1 m处切根贴膜时,小黑杨叶肉细胞中叶绿体的功能得到了较快的恢复。

    切根贴膜技术方法简单,具有投资少、见效快、回报高、能长时间发挥作用等特点[25]。林带经过切根贴膜技术改良后,胁地范围内作物长势显著提高,可以达到正常农田的90%以上[26]。每公顷胁地贴膜成本费为615元,扣除成本,当年每公顷增收4 424元[27]。在自然条件下,切根贴膜处理的有效作用时间可达15年以上[6]。切根沟深度主要取决于树木根系在土壤中分布状况,根据树种、林龄的不同一般选择在距地表为60~80 cm之间。林带切根沟与林带距离尚没有统一标准且缺乏理论支持。在本研究中,杨树通过改变自身的光合生理特性来适应切根贴膜所导致的水分胁迫,叶片气孔形态及叶绿体超微结构都发生了适应性变化,叶片净光合速率在切根贴膜3个月后基本恢复到对照水平,说明杨树因切根贴膜而导致的叶片结构与功能的损伤是可逆的。因此,距树干0.5~2 m处切根贴膜是可行的。但是,切根贴膜位置与树干距离越近,对树木根系的伤害越大,根系吸收水分和养料的空间越小,所需恢复时间越长。所以在不过多占用耕地的前提下,应尽量增加断根沟与林带的距离,保证树木有充分的水分和养料吸收空间。

    另外,本研究结果只是反映了不同距离的切根贴膜处理对杨树光合生理特性、气孔特征及叶绿体超微结构一年的短期影响,而关于多年的作用效果还有待进一步研究。

  • 图  1   银杏地上生物量与地下生物量之间的关系

    Figure  1.   Relationship between aboveground and belowground biomass of Ginkgo biloba

    图  2   银杏树干、树枝、树叶、树根生物量空间分布图

    Figure  2.   Horizontal and vertical distribution of stem, branch, leaf and root biomass of G. biloba

    表  1   标准木基本信息表

    Table  1   Basic characteristics of sample trees

    径级
    Diameter at breast height (DBH) class/cm
    株数
    Tree number
    胸径
    DBH/cm
    树高
    Tree height(H)/m
    树冠长度
    Grown length/m
    南北向冠幅
    South-north crown width/m
    东西向冠幅
    East-west crown width/m
    生物量
    Biomass/kg
    10~15710.911.16.62.63.328.50
    11.411.29.33.22.335.70
    13.312.310.25.36.456.05
    13.412.09.66.05.056.61
    13.511.47.84.94.852.35
    13.611.28.14.94.559.46
    13.811.79.34.74.360.26
    15~20317.113.911.93.98.881.36
    17.713.59.65.15.6102.84
    18.812.610.25.76.3108.95
    >20320.113.011.56.07.2134.82
    24.814.512.06.58.6223.20
    27.213.612.68.49.7320.27
    下载: 导出CSV

    表  2   株水平上各器官生物量测定值

    Table  2   Measurement of each component biomass at the tree level

    kg
    组分
    Component
    径级DBH class
    10~15 cm15~20 cm>20 cm
    叶生物量
    Leaf biomass
    2.623.8017.96
    干生物量
    Stem biomass
    28.2051.59146.00
    枝生物量
    Branch biomass
    6.0216.0172.60
    地上部分生物量
    Aboveground biomass
    36.8471.40236.56
    根生物量
    Root biomass
    13.0126.3283.70
    总生物量
    Total biomass
    49.8597.72320.26
    下载: 导出CSV

    表  3   枝水平上枝生物量异速生长模型

    Table  3   Allometric models for branch at branch level

    生物量
    Biomass/kg
    模型
    Model
    系数CoefficientRadj2显著性
    Sig.
    CFSSEMAEMPE
    abc
    枝BranchlnW=a+blnBD-0.46 ns3.039***-0.904P<0.0011.0781.6990.27924.718
    lnW=a+blnBD+ClnBL0.039 ns0.916 ns2.1290.957P<0.0011.0260.7150.20112.038
    注:*表示在0.05水平上差异显著;**表示在0.01水平上差异显著;***表示在0.001水平上差异显著;ns表示在0.05水平上差异不显著;BD表示基径;BL表示枝长。下同。Notes: * means significant difference at P<0.05 level; ** means significant difference at P<0.01 level; *** means significant difference at P<0.01 level; ns means no significant difference at P<0.05 level; BD means branch diameter; BL means branch length. The same below.
    下载: 导出CSV

    表  4   银杏不同器官生物量模型参数估计、拟合结果和检验结果

    Table  4   Parameter estimation, fitting and test results of different components of G. biloba biomass

    模型
    Model
    生物量
    Biomass/kg
    系数CoefficientRadj2显著性Sig.CFSSEMAEMPE
    abc
    lnW=a+blnD叶Leaf-5.21***2.37***0.868P<0.0011.025 00.7520.19917.535
    干Stem-2.23***2.17***0.989P<0.0011.000 10.0460.0481.280
    枝Branch-6.95***3.36***0.871P<0.0011.077 01.4710.26326.879
    地上Aboveground-2.56***2.40***0.980P<0.0011.003 00.1040.0731.848
    根Root-3.75***2.45***0.989P<0.0011.000 60.1070.0782.761
    全株Total-2.29***2.41***0.985P<0.0011.000 20.0810.0661.550
    lnW=a+blnH叶Leaf-14.09**6.13**0.571P<0.0101.075 42.5180.35633.011
    干Stem-10.75**5.77***0.698P<0.0011.004 71.6340.2977.758
    枝Branch-19.13**8.53**0.550P<0.0011.153 16.1830.48944.667
    地上Aboveground-10.51**5.09***0.668P<0.0011.005 42.1660.3257.890
    根Root-13.24**6.46***0.678P<0.0011.010 82.2650.33711.212
    全株Total-11.55**6.32***0.068P<0.0011.004 82.1590.3277.393
    lnW=a+bln(D2H)叶Leaf-6.95***1.03***0.853P<0.0011.025 40.7700.20617.974
    干Stem-3.84***0.95***0.980P<0.0011.000 20.0800.0581.556
    枝Branch-9.38***1.46***0.852P<0.0011.080 01.7190.28828.092
    地上Aboveground-4.32***1.04***0.967P<0.0011.000 50.1680.0822.040
    根Root-5.60***1.07***0.967P<0.0011.001 00.1740.1033.542
    全株Total-4.07***1.05***0.972P<0.0011.000 30.1450.0801.823
    lnW=a+blnD+clnH叶Leaf-3.26***2.68***-1.12***0.861P<0.0011.025 20.7490.20017.649
    干Stem-1.61***2.27***-0.36***0.990P<0.0011.000 20.0460.4801.277
    枝Branch-3.14***3.97***-2.18***0.870P<0.0011.077 21.3770.25726.786
    地上Aboveground-1.18***2.62***-0.79***0.981P<0.0011.000 30.1000.0731.864
    根Root-2.64***2.63***-0.64***0.980P<0.0011.000 70.1040.0742.657
    全株Total-1.01***2.61***-0.73***0.986P<0.0011.000 20.0770.0671.564
    下载: 导出CSV
  • [1]

    OLSON J S, WATTS J A, ALLISON L J. Carbon in live vegetation of major world ecosystems[R]. 1983.

    [2] 方精云, 刘国华, 徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报, 1996, 16(5): 497-508. http://www.cqvip.com/Main/Detail.aspx?id=2354606

    FANG J Y, LIU G H, XU S L. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 1996, 16(5): 497-508. http://www.cqvip.com/Main/Detail.aspx?id=2354606

    [3] 国家林业局.第八次全国森林资源清查结果[J].林业资源管理, 2014(1): 1-2. http://d.old.wanfangdata.com.cn/Periodical/lyzygl201401001

    State Forestry Administration. The 8th national forestry inventory results[J]. Forest Resources Management, 2014(1): 1-2. http://d.old.wanfangdata.com.cn/Periodical/lyzygl201401001

    [4] 冯宗炜.中国森林生态系统的生物量和生产力[M].北京:科学出版社, 1999: 191-196.

    FENG Z W. Biomass and primary productivity of forest ecosystems in China[M]. Beijing: Science Press, 1999: 191-196.

    [5]

    FANG J Y, WANG Z M. Forest biomass estimation at regional and global levels, with special reference to China's forest biomass[J]. Ecological Research, 2001, 16(3): 587-592. doi: 10.1046/j.1440-1703.2001.00419.x

    [6] 罗云建, 张小全, 王效科, 等.森林生物量的估算方法及其研究进展[J].林业科学, 2009, 45(8): 129-134. doi: 10.3321/j.issn:1001-7488.2009.08.023

    LUO Y J, ZHANG X Q, WANG X K, et al. Forest biomass estimation methods and their prospects[J]. Scientia Silvae Sinicae, 2009, 45(8): 129-134. doi: 10.3321/j.issn:1001-7488.2009.08.023

    [7] 潘维俦, 李利村, 高正衡, 等.杉木人工林生态系统中的生物产量及其生产力的研究[J].湖南林业科技, 1978 (5): 2-14. http://www.cnki.com.cn/Article/CJFD1979-HLKJ197805000.htm

    PAN W S, LI L C, GAO Z H, et al. Study on biomass and productivity in ecology system of China fir plantation[J]. Hunan Forestry Science and Technology, 1978 (5): 2-14. http://www.cnki.com.cn/Article/CJFD1979-HLKJ197805000.htm

    [8] 冯宗炜, 陈楚莹, 张家武, 等.湖南会同地区马尾松林生物量的测定[J].林业科学, 1982, 18(2): 127-134. http://www.cnki.com.cn/Article/CJFDTotal-LYKE198202002.htm

    FENG Z W, CHEN C Y, ZHANG J W, et al. Determination of biomass of Pinus massoniana stand in Huitong County, Hunan Province[J]. Scientia Silvae Sinicae, 1982, 18(2): 127-134. http://www.cnki.com.cn/Article/CJFDTotal-LYKE198202002.htm

    [9] 李文华.小兴安岭谷地云冷杉林群落结构和演替的研究[J].资源科学, 1980, 2(4): 17-29. http://www.cnki.com.cn/Article/CJFDTotal-ZRZY198004002.htm

    LI W H. Community structure and succession of valley spruce-fir forest in Xiaoxing'an Mountains, China[J]. Natural Resources, 1980, 2(4): 17-29. http://www.cnki.com.cn/Article/CJFDTotal-ZRZY198004002.htm

    [10] 李意德, 曾庆波, 吴仲民, 等.尖峰岭热带山地雨林生物量的初步研究[J].植物生态学与地植物学学报, 1992, 16(4): 293-300. http://www.cnki.com.cn/Article/CJFDTotal-ZWSB199204000.htm

    LI Y D, ZENG Q B, WU Z M, et al. Study on biomass of tropical mountain rain forest in Jianfengling, Hainan Province[J]. Chinese Journal of Plant Ecology, 1992, 16(4): 293-300. http://www.cnki.com.cn/Article/CJFDTotal-ZWSB199204000.htm

    [11] 张志, 田昕, 陈尔学, 等.森林地上生物量估测方法研究综述[J].北京林业大学学报, 2011, 33(5): 144-150. http://j.bjfu.edu.cn/article/id/9663

    ZHANG Z, TIAN X, CHEN E X, et al. Review of methods on estimating forest aboveground biomass[J]. Journal of Beijing Forestry University, 2011, 33(5): 144-150. http://j.bjfu.edu.cn/article/id/9663

    [12]

    CHUNG S Y, YIM J S, CHO H K, et al. Comparison of forest biomass estimation methods by combining satellite data and field data[J/OL]. Proceedings of IUFRO Division, 2009, 4[2016-08-02]. https://www.researchgate.net/publication/237334259.

    [13] 王维枫, 雷渊才, 王雪峰, 等.森林生物量模型综述[J].西北林学院学报, 2008, 23(2): 58-63. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb200802014

    WANG W F, LEI Y C, WANG X F, et al. A review of forest biomass models[J]. Journal of Northwest Forestry University, 2008, 23(2): 58-63. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb200802014

    [14] 唐守正, 张会儒, 胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学, 2000, 36(增刊1): 19-27. http://d.old.wanfangdata.com.cn/Periodical/lykx2000Z1003

    TANG S Z, ZHANG H R, XU H. Study on establish and estimate method of compatible biomass model[J]. Scientia Silvae Sinicae, 2000, 36(Suppl. 1): 19-27. http://d.old.wanfangdata.com.cn/Periodical/lykx2000Z1003

    [15]

    CHAVE J, ANDALO C, BROWN S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145(1): 712-735. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=687e13a4f79ffd6b30216f5e3963cd74

    [16] 曾伟生, 唐守正.一个新的通用性相对生长生物量模型[J].林业科学, 2012, 48(1): 48-52. http://d.old.wanfangdata.com.cn/Periodical/lykx201201009

    ZENG W S, TANG S Z. A new general biomass allometric model[J]. Scientia Silvae Sinicae, 2012, 48(1): 48-52. http://d.old.wanfangdata.com.cn/Periodical/lykx201201009

    [17] 罗天祥.中国主要森林类型生物生产力格局及其数学模型[D].北京: 中国科学院研究生院, 1996. http://cdmd.cnki.com.cn/Article/CDMD-80061-2006113572.htm

    LUO T X. Patterns of net primary productivity for Chinese major forest types and their mathematical models[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 1996. http://cdmd.cnki.com.cn/Article/CDMD-80061-2006113572.htm

    [18] 左舒翟, 任引, 翁闲, 等.亚热带常绿阔叶林9个常见树种的生物量相对生长模型[J].应用生态学报, 2015, 26(2): 356-362. http://d.old.wanfangdata.com.cn/Periodical/yystxb201502004

    ZUO S D, REN Y, WENG X, et al. Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China[J]. The Journal of Applied Ecology, 2015, 26(2): 356-362. http://d.old.wanfangdata.com.cn/Periodical/yystxb201502004

    [19]

    MUUKKONEN P. Generalized allometric volume and biomass equations for some tree species in Europe[J]. European Journal of Forest Research, 2007, 126(2): 157-166. doi: 10.1007/s10342-007-0168-4

    [20] 曹福亮.中国银杏志[M].北京:中国林业出版社, 2007.

    CAO F L. Chinese notes of Ginkgo biloba[M]. Beijing: China Forestry Publishing House, 2007.

    [21] 陈西娟, 王成章, 叶建中.银杏叶化学成分及其应用研究进展.生物质化学工程[J]. 2008, 42(4): 57-62. doi: 10.3969/j.issn.1673-5854.2008.04.012

    CHEN X J, WANG C Z, YE J Z. Research progress of chemical constituents of Ginkgo biloba Linn. leaves and their application[J]. Biomass Chemical Engineering, 2008, 42(4): 57-62. doi: 10.3969/j.issn.1673-5854.2008.04.012

    [22] 邵继平, 王伯初, 陈欣, 等.银杏叶提取物药用价值的研究进展[J].重庆大学学报(自然科学版), 2003, 26(1): 130-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqdxxb200301034

    SHAO J P, WANG B C, CHEN X, et al. Advanced research on pharmacology value of the extracts of Ginkgo biloba leaves[J]. Journal of Chongqing University(Natural Science Edition), 2003, 26(1): 130-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqdxxb200301034

    [23] 彭方仁, 张纪林, 李杰, 等.海岸带不同林农复合经营模式的生物生产力研究[J].南京林业大学学报(自然科学版), 2000, 24(2): 78-82. doi: 10.3969/j.issn.1000-2006.2000.02.019

    PENG F R, ZHANG J L, LI J, et al. Studies on biomass productivity of three different agroforestry models in seacoast area[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2000, 24(2): 78-82. doi: 10.3969/j.issn.1000-2006.2000.02.019

    [24] 曹林, 阮宏华, 代劲松, 等.基于HJ-1A/1B CCD数据的区域银杏生物量估测及碳密度制图[J].南京林业大学学报(自然科学版), 2013, 37(2): 8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlydxxb201302002

    CAO L, RUAN H H, DAI J S, et al. The regional biomass estimation and carbon density mapping of Ginkgo biloba based on HJ-1A/1B CCD satellite image[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(2): 8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlydxxb201302002

    [25] 于庚康, 罗艳, 高苹, 等.区域农业经济气象敏感性和气象经济效益[J].生态学杂志, 2012, 31(5): 1265-1271. http://d.old.wanfangdata.com.cn/Periodical/stxzz201205033

    YU G K, LUO Y, GAO P, et al. Meteorological sensitivity and meteorological services economic benefit of regional agricultural economy[J]. Chinese Journal of Ecology, 2012, 31(5): 1265-1271. http://d.old.wanfangdata.com.cn/Periodical/stxzz201205033

    [26] 孟宪宇.测树学[M].北京:中国林业出版社, 2006: 197-199.

    MENG X Y. Forest measurement[M]. Beijing: China Forestry Publishing House, 2006: 197-199.

    [27]

    WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d480b7b7505f7c5bcdc3b33c43141c0f

    [28] 明安刚, 郑路, 麻静, 等.铁力木人工林生物量与碳储量及其分配特征[J].北京林业大学学报, 2015, 37(2): 32-40. doi: 10.13332/j.cnki.jbfu.2015.02.015

    MING A G, ZHEN L, MA J, et al. Biomass and carbon stock and allocation characteristic in Mesua ferrea plantation[J]. Journal of Beijing Forestry University, 2015, 37(2): 32-40. doi: 10.13332/j.cnki.jbfu.2015.02.015

    [29]

    GOWER S T, KUCHARIK C J, NORMAN J M. Direct and indirect estimation of leaf area index, APAR, and net primary production of terrestrial ecosystems[J]. Remote Sensing of Environment, 1999, 70(1): 29-51. doi: 10.1016/S0034-4257(99)00056-5

    [30]

    HALL R J, CASE B S. Erratum: assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada[J]. Canadian Journal of Forest Research, 2008, 38(6): 878-889. doi: 10.1139/X08-906#.XXMLYPk6s7M

    [31]

    SALIS S M, ASSIS M A, MATTOS P P. Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil's Pantanal Wetlands based on allometric correlations[J]. Forest Ecology & Management, 2006, 228(1): 61-68. https://www.sciencedirect.com/science/article/pii/S0378112706001344

    [32]

    TER-MIKAELIAN M T, KORZUKHIN M D. Biomass equations for sixty-five North American tree species[J]. Forest Ecology & Management, 1997, 97(1): 1-24. doi: 10.1016-S0378-1127(97)00019-4/

    [33]

    ZIANIS D. Predicting mean aboveground forest biomass and its associated variance[J]. Forest Ecology & Management, 2008, 256(6): 1400-1407. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029672022/

    [34]

    BEETS P N, KIMBERLEY M O, OLIVER G R, et al. Allometric equations for estimating carbon stocks in natural forest in New Zealand[J]. Forests, 2012, 3(3): 818-839. doi: 10.3390/f3030818

    [35]

    NÁVAR J. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico[J]. Forest Ecology & Management, 2009, 257(2): 427-434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe7cbaf2e457a8d05402279feb1f2f4c

    [36]

    WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology & Management, 2006, 222(1): 9-16. https://www.sciencedirect.com/science/article/pii/S0378112705005888

    [37]

    PARRESOL B R. Assessing tree and stand biomass: a review with examples and critical comparisons[J]. Forest Science, 1999, 45(4): 573-593. http://europepmc.org/abstract/AGR/IND22056385

    [38]

    ZABEK L M, PRESCOTT C E. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia[J]. Forest Ecology & Management, 2006, 223(1-3): 291-302. https://www.sciencedirect.com/science/article/pii/S0378112705007206

    [39]

    SILESHI G W. A critical review of forest biomass estimation models, common mistakes and corrective measures[J]. Forest Ecology and Management, 2014, 329: 237-254. doi: 10.1016/j.foreco.2014.06.026

    [40]

    NELSON B W, MESQUITA R, PEREIRA J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. Forest Ecology & Management, 1999, 117(1-3): 149-167. doi: 10.1016-S0378-1127(98)00475-7/

    [41]

    KOZAK A, KOZAK R. Does cross validation provide additional information in the evaluation of regression models?[J]. Canadian Journal of Forest Research, 2003, 33(6): 1499.

    [42]

    PEICHL M, ARAIN M A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests[J]. Forest Ecology & Management, 2007, 253(1-3): 68-80. doi: 10.1016-j.foreco.2007.07.003/

    [43] 董点, 林天喜, 唐景毅, 等.紫椴生物量分配格局及异速生长方程[J].北京林业大学学报, 2014, 36(4): 54-63. doi: 10.13332/j.cnki.jbfu.2014.04.013

    DONG D, LIN T X, TANG J Y, et al. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54-63. doi: 10.13332/j.cnki.jbfu.2014.04.013

    [44]

    HOUGHTON R A, LAWRENCE K T, HACKLER J L, et al. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates[J]. Global Change Biology, 2001, 7(7): 731-746. doi: 10.1046/j.1365-2486.2001.00426.x

    [45] 汪金松, 张春雨, 范秀华, 等.臭冷杉生物量分配格局及异速生长模型[J].生态学报, 2011, 31(14): 3918-3927. http://d.old.wanfangdata.com.cn/Periodical/stxb201114007

    WANG J S, ZHANG C Y, FAN X H, et al. Biomass allocation patterns and allometric models of Abies nephrolepis Maxim.[J]. Acta Ecologica Sinica, 2011, 31(14): 3918-3927. http://d.old.wanfangdata.com.cn/Periodical/stxb201114007

    [46]

    ZHANG H, SONG T, WANG K, et al. Influences of stand characteristics and environmental factors on forest biomass and root-shoot allocation in southwest China[J]. Ecological Engineering, 2016, 91: 7-15. doi: 10.1016/j.ecoleng.2016.01.040

    [47] 黄玫, 季劲钧, 曹明奎, 等.中国区域植被地上与地下生物量模拟[J].生态学报, 2006, 26(12): 4156-4163. doi: 10.3321/j.issn:1000-0933.2006.12.031

    HUANG M, JI J J, CAO M K, et al. Modeling study of vegetation shoot and root biomass in China[J]. Acta Ecologica Sinica, 2006, 26(12): 4156-4163. doi: 10.3321/j.issn:1000-0933.2006.12.031

    [48]

    LI Z, KURZ W A, APPS M J, et al. Belowground biomass dynamics in the carbon budget model of the Canadian forest sector: recent improvements and implications for the estimation of NPP and NEP[J]. Canadian Journal of Forest Research, 2011, 33(1): 126-136. doi: 10.1139/x02-165#.XXML6fk6s7M

    [49]

    LEVERENZ J W. Shade-shoot structure, photosynthetic performance in the field, and photosynthetic capacity of evergreen conifers[J]. Tree Physiology, 1996, 16(16): 109-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000001746605

    [50]

    BRIX H. Effects of thinning and nitrogen fertilization on branch and foliage production in Douglas-fir[J]. Canadian Journal of Forest Research, 1981, 10(11): 502-511. doi: 10.1139-x81-069/

    [51]

    XIAO C W, CEULEMANS R. Allometric relationships for below-and aboveground biomass of young Scots pines[J]. Forest Ecology & Management, 2005, 203(1-3): 177-186. doi: 10.1016-j.foreco.2004.07.062/

    [52]

    LACLAU P. Root biomass and carbon storage of ponderosa pine in a northwest Patagonia plantation[J]. Forest Ecology & Management, 2003, 173(1): 353-360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd23d10b04d27e526ac15a2c3d5a8434

    [53]

    NETER J, KUTNER M H, NACHTSHEIM C J, et al. Applied linear statistical model[J]. Journal of the American Statistical Association, 1986, 81: 19-32. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026998328/

    [54] 李轩然, 刘琪璟, 陈永瑞, 等.千烟洲人工林主要树种地上生物量的估算[J].应用生态学报, 2006, 17(8): 1382-1388. doi: 10.3321/j.issn:1001-9332.2006.08.005

    LI X R, LIU Q J, CHEN Y R, et al. Aboveground biomass of three conifers in Qianyanzhou plantation[J]. The Journal of Applied Ecology, 2006, 17(8): 1382-1388. doi: 10.3321/j.issn:1001-9332.2006.08.005

    [55] 向玮, 雷相东, 刘刚, 等.近天然落叶松云冷杉林单木枯损模型研究[J].北京林业大学学报, 2008, 30(6): 90-98. doi: 10.3321/j.issn:1000-1522.2008.06.014

    XIANG W, LEI X D, LIU G, et al. Individual tree mortality models for semi-natural larch-spruce-fir forests in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2008, 30(6): 90-98. doi: 10.3321/j.issn:1000-1522.2008.06.014

    [56]

    MOWRER H T, FRAYER W E. Variance propagation in growth and yield projections[J]. Canadian Journal of Forest Research, 1986, 16(6): 1196-1200. doi: 10.1139/x86-213

  • 期刊类型引用(11)

    1. 李鑫磊,杨传颖,石宝,敖乐根. 基于深度哈希与注意力机制的花卉图像检索. 计算机仿真. 2024(02): 207-211+532 . 百度学术
    2. 陈泽伟,乔印虎,周玉蝶. 基于机器视觉的白芍药材双面品质检测系统. 常州工学院学报. 2024(02): 1-7 . 百度学术
    3. 崔艳荣,卞珍怡,高英宁. 基于生成对抗网络的花卉识别方法. 江苏农业科学. 2022(22): 200-208 . 百度学术
    4. 何进荣,任维鑫,石延新,白宗文. 基于卷积神经网络的牡丹花品种识别. 系统仿真技术. 2021(02): 128-133 . 百度学术
    5. 吴丽娜,王林山. 改进的LeNet-5模型在花卉识别中的应用. 计算机工程与设计. 2020(03): 850-855 . 百度学术
    6. 黄清梅,杨晓洪,侯瑶,刘艳芳,吕宏斌. 显色图像分析技术在水稻叶耳花青甙显色目测分级中的应用. 食品安全质量检测学报. 2020(07): 2050-2056 . 百度学术
    7. 任意平,夏国强,李俊丽. 基于花蕊区域定位的花卉识别方法. 电子测量技术. 2020(07): 97-102 . 百度学术
    8. 李晓红,吴仲华,刘海秋,马慧敏. 基于卷积神经网络模型的多肉植物种类识别. 贵州师范学院学报. 2020(03): 9-15 . 百度学术
    9. 刘嘉政. 基于深度迁移学习模型的花卉种类识别. 江苏农业科学. 2019(20): 231-236 . 百度学术
    10. 刘文定,李安琪,张军国,谢将剑,鲍伟东. 基于ROI-CNN的赛罕乌拉国家级自然保护区陆生野生动物自动识别. 北京林业大学学报. 2018(08): 123-131 . 本站查看
    11. 张彤,刘志,庄新卿. 基于开发者平台和深度学习的智能识花与护花系统. 工业控制计算机. 2018(01): 90-92 . 百度学术

    其他类型引用(11)

图(2)  /  表(4)
计量
  • 文章访问数:  3234
  • HTML全文浏览量:  782
  • PDF下载量:  113
  • 被引次数: 22
出版历程
  • 收稿日期:  2016-11-15
  • 修回日期:  2017-02-20
  • 发布日期:  2017-03-31

目录

/

返回文章
返回