高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同生境胡杨叶片解剖特征及其适应可塑性

钟悦鸣 董芳宇 王文娟 王健铭 李景文 吴波 贾晓红

钟悦鸣, 董芳宇, 王文娟, 王健铭, 李景文, 吴波, 贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性[J]. 北京林业大学学报, 2017, 39(10): 53-61. doi: 10.13332/j.1000-1522.20170089
引用本文: 钟悦鸣, 董芳宇, 王文娟, 王健铭, 李景文, 吴波, 贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性[J]. 北京林业大学学报, 2017, 39(10): 53-61. doi: 10.13332/j.1000-1522.20170089
ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. doi: 10.13332/j.1000-1522.20170089
Citation: ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. doi: 10.13332/j.1000-1522.20170089

不同生境胡杨叶片解剖特征及其适应可塑性

doi: 10.13332/j.1000-1522.20170089
基金项目: 

国家自然科学基金项目 31570610

科技部基础工作专项 2012FY111700

国家自然科学基金项目 31070553

详细信息
    作者简介:

    钟悦鸣。主要研究方向:生物多样性。Email:ym_tsong@sina.com  地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    李景文,博士,教授。主要研究方向:生物多样性。Email:lijingwen@bjfu.edu.cn  地址:同上

  • 中图分类号: S718.47;S792.119

Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats

  • 摘要: 本文对敦煌西湖荒漠湿地与内蒙古额济纳绿洲河岸林的胡杨叶片进行解剖结构数量化研究,比较了两种不同生境中胡杨叶片的适应对策。结果表明:上、下角质层厚度与叶片结构紧密度在两种生境中无显著差异,除叶片结构疏松度外,荒漠湿地中的胡杨叶片各解剖结构厚度及面积等特征显著大于绿洲河岸林;0~30 cm土壤全氮含量对荒漠湿地与绿洲河岸林的胡杨叶片解剖结构特征具有显著影响,而0~30 cm土壤全钾含量对两种生境中的胡杨叶片解剖结构发育均无显著影响;荒漠湿地中的胡杨叶片各结构变异系数及多数结构的可塑性指数均大于绿洲河岸林,其中主脉木质部面积的变异系数和可塑性指数在两种生境中均较大。与生境中物种丰富度更高的额济纳绿洲河岸林相比,敦煌西湖荒漠湿地的胡杨以更大的叶片解剖结构厚度或面积等特征来适应更加恶劣的生境。叶片解剖结构的可塑性是胡杨适应荒漠区脆弱生态系统的重要方式和策略。

     

  • 图  1  胡杨叶片横切面

    1~3为绿洲河岸林胡杨叶片解剖结构;4~6为荒漠湿地胡杨叶片解剖结构;C为角质层;Sc为孔下室;UE为上表皮细胞;LE为下表皮细胞;UPt为上栅栏组织;LPt为下栅栏组织;St为海绵组织;Mv为主脉;Mvx为主脉木质部;Cc为晶异细胞。

    Figure  1.  Leaf cross sections of Populus euphratica

    1-3, Leaf anatomical structures of Populus euphratica in oasis-desert ecosystem; 4-6, leaf anatomical structures of Populus euphratica in desert-wetland ecosystem; C, cuticle; Sc, stomatal chamber; UE, upper epidermal cell; LE, lower epidermal cell; UPt, upper palisade tissue; LPt, lower palisade tissue; St, spongy tissue; Mv, main vein; Mvx, main vein xylem; Cc, crystal cell.

    图  2  两种生境土壤因子含量比较

    Figure  2.  Comparison of soil factors in two habitats

    表  1  两种生境的地理环境

    Table  1.   Geographical environments of two habitats

    地理环境
    Geographical environment
    荒漠湿地
    Desert-wetland
    绿洲河岸林
    Oasis-riparian forest
    经度Longitude 93°14′33″~93°44′44″E 101°05′10″~101°18′07″E
    纬度Latitude 40°08′14″~40°18′22″N 41°58′06″~42°02′45″N
    分布Distribution 沙漠或戈壁中谷地,绿洲边缘
    Desert or gobi in the valley, oasis edge
    河道两侧
    Both sides of the river
    主要伴生种Main accompanying species 胀果甘草Glycyrrhiza inflata、芦苇Phragmites australis、黑果枸杞Lycium ruthenicum 柽柳Tamarix spp.、苦豆子Sophora alopecuroides、芨芨草Achnatherum splendens、猪毛菜Salsola arbuscula、骆驼刺Alhagi sparsifolia、黑果枸杞Lycium ruthenicum、芦苇Phragmites australis
    年均气温Annual average temperature/℃ 9.9 8.3
    年均降水量Annual average precipitation/mm 39.9 37
    年均蒸发量Annual average evaporation capacity/mm 2 486 3 841.51
    干扰Interference 无None 旅游、放牧、封育Travel, grazing, enclosure
    下载: 导出CSV

    表  2  两种生境中胡杨叶片解剖结构特征比较

    Table  2.   Comparison of leaf anatomical structures of Poplulus euphratica in two habitats

    指标Index 荒漠湿地Desert-wetland 绿洲河岸林Oasis-riparian forest
    叶厚度Leaf thickness/μm 486.957±50.054b 301.945±53.355a
    上角质层厚度Upper cuticle thickness/μm 1.784±0.139a 1.974±0.353a
    下角质层厚度Lower cuticle thickness/μm 1.629±0.136a 1.826±0.365a
    上表皮细胞厚度Upper epidermal cell thickness/μm 24.458±3.665b 21.346±4.108a
    下表皮细胞厚度Lower epidermal cell thickness/μm 23.310±3.442b 19.935±3.580a
    孔下室深度Stomatal chamber depth/μm 56.136±6.302b 43.006±13.674a
    上栅栏组织厚度Upper palisade tissue thickness/μm 146.604±30.859b 85.332±17.515a
    下栅栏组织厚度Lower palisade tissue thickness/μm 142.188±39.462b 83.203±20.331a
    栅栏组织总厚度Total of palisade tissue thickness/μm 288.792±69.824b 168.535±36.007a
    海绵组织厚度Spongy tissue thickness/μm 110.951±30.898b 80.633±18.616a
    栅海比Palisade/spongy 3.092±1.597b 2.164±0.539a
    叶片结构紧密度Ratio of palisade/leaf thickness 0.587±0.0845a 0.558±0.0536a
    叶片结构疏松度Ratio of spongy/leaf thickness 0.233±0.076b 0.269±0.0530a
    晶异细胞直径Diameter of crystal cell/μm 22.683±1.442b 17.991±3.856a
    主脉维管束面积Main vein vascular bundle area/μm2 156 099.760±75 385.528b 73 398.998±29 110.138a
    主脉木质部面积Main vein xylem area/μm2 41 401.047±22 413.554b 23 869.676±10 461.009a
    注:不同小写字母表示同一指标在不同生境的P<0.05水平上差异显著。Note: different lowercase letters indicate significant difference of same index under different habitats at P<0.05 level.
    下载: 导出CSV

    表  3  荒漠湿地中胡杨叶片解剖结构与土壤因子相关分析

    Table  3.   Correlation analysis between leaf anatomical structures and soil factors of Poplulus euphratica in desert-wetland

    指标Index 0~30 cm 30~60 cm
    全氮Total
    nitrogen
    全磷Total
    phosphorus
    全钾Total
    potassium
    全氮Total
    nitrogen
    全磷Total
    phosphorus
    全钾Total
    potassium
    叶厚度Leaf thickness -0.466 0.694* 0.19 0.092 -0.2 0.314
    上表皮细胞厚度Upper epidermal cell thickness -0.629* -0.29 -0.279 0.182 -0.943** -0.505
    下表皮细胞厚度Lower epidermal cell thickness -0.546 -0.342 -0.236 0.225 -0.891** -0.562
    孔下室深度Stomatal chamber depth -0.659* 0.572 -0.252 -0.323 -0.342 0.54
    上栅栏组织厚度Upper palisade tissue thickness -0.765** 0.667* -0.154 -0.185 -0.462 0.466
    下栅栏组织厚度Lower palisade tissue thickness -0.622* 0.683* -0.004 -0.076 -0.328 0.415
    栅栏组织总厚度Total of palisade tissue thickness -0.690* 0.681* -0.071 -0.125 -0.389 0.441
    海绵组织厚度Spongy tissue thickness 0.836** -0.246 0.562 0.432 0.680* -0.36
    栅海比Palisade/spongy -0.692* 0.479 -0.337 -0.359 -0.417 0.497
    叶片结构疏松度Ratio of spongy/leaf thickness 0.877** -0.38 0.441 0.326 0.695* -0.356
    晶异细胞直径Diameter of crystal cell -0.643* 0.787** 0.128 0.052 -0.342 0.375
    主脉维管束面积Main vein vascular bundle area 0.870** -0.288 0.228 -0.022 0.858** 0.008
    主脉木质部面积Main vein xylem area 0.880** -0.337 0.209 -0.023 0.844** -0.025
    注:*表示在P<0.05水平上相关性显著; **表示P<0.01水平上相关性极显著。下同。Notes: * denotes significant difference at P<0.05 level; ** denotes significant difference at P<0.01 level. Same as below.
    下载: 导出CSV

    表  4  绿洲河岸林中胡杨叶片解剖结构与土壤因子相关分析

    Table  4.   Correlation analysis between leaf anatomical structures and soil factors of Poplulus euphratica in oasis-riparian forest

    指标Index 0~30 cm 30~60 cm
    全氮Total nitrogen 全磷Total phosphorus 全钾Total potassium 全氮Total nitrogen 全磷Total phosphorus 全钾Total potassium
    叶厚度Leaf thickness -0.270* 0.355** 0.071 -0.128 -0.244 -0.158
    上表皮细胞厚度Upper epidermal cell thickness -0.065 0.094 0.035 -0.022 0.076 -0.034
    下表皮细胞厚度Lower epidermal cell thickness -0.205 0.153 -0.136 -0.099 -0.235 -0.082
    孔下室深度Stomatal chamber depth -0.168 0.326** 0.027 -0.085 -0.291* -0.192
    上栅栏组织厚度Upper palisade tissue thickness -0.302* 0.341** 0.093 -0.171 -0.293* -0.254*
    下栅栏组织厚度Lower palisade tissue thickness -0.406** 0.427** 0.058 -0.234 -0.185 -0.237
    栅栏组织总厚度Total of palisade tissue thickness -0.377** 0.408** 0.078 -0.216 -0.247* -0.258*
    海绵组织厚度Spongy tissue thickness 0.115 0.1 0.12 0.104 0.007 0.068
    栅海比Palisade/spongy -0.387** 0.239 -0.037 -0.246 -0.17 -0.258*
    叶片结构疏松度Ratio of spongy/leaf thickness 0.404** -0.193 0.091 0.283* 0.211 0.259*
    晶异细胞直径Diameter of crystal cell 0.339** -0.116 0.003 0.387** 0.045 0.382**
    主脉维管束面积Main vein vascular bundle area -0.290* 0.212 0.041 -0.169 -0.137 -0.353**
    主脉木质部面积Main vein xylem area -0.279* 0.122 -0.01 -0.178 -0.069 -0.358**
    下载: 导出CSV

    表  5  不同生境胡杨叶片解剖结构变异系数和可塑性指数

    Table  5.   Variation coefficient and plasticity index of Populus euphratica under different habitats

    指标Index 荒漠湿地Desert-wetland 绿洲河岸林Oasis-riparian forest
    变异系数Variation coefficient 可塑性指数Plasticity index 变异系数Variation coefficient 可塑性指数Plasticity index
    叶厚度Leaf thickness 0.242 0.329 0.137 0.347
    上表皮细胞厚度Upper epidermal cell thickness 0.265 0.401 0.148 0.382
    下表皮细胞厚度Lower epidermal cell thickness 0.287 0.390 0.156 0.417
    孔下室深度Stomatal chamber depth 0.387 0.633 0.230 0.544
    上栅栏组织厚度Upper palisade tissue thickness 0.311 0.613 0.166 0.457
    下栅栏组织厚度Lower palisade tissue thickness 0.310 0.523 0.159 0.461
    栅栏组织总厚度Total of palisade tissue thickness 0.294 0.510 0.149 0.440
    海绵组织厚度Spongy tissue thickness 0.364 0.650 0.203 0.524
    栅海比Palisade/spongy 0.389 0.761 0.197 0.580
    叶片结构疏松度Ratio of spongy/leaf thickness 0.298 0.638 0.154 0.441
    晶异细胞直径Diameter of crystal cell 0.371 0.518 0.207 0.534
    主脉维管束面积Main vein vascular bundle area 0.442 0.511 0.291 0.593
    主脉木质部面积Main vein xylem area 0.517 0.567 0.363 0.672
    平均值Mean 0.328 0.531 0.185 0.472
    下载: 导出CSV
  • [1] GALLOPIN G C. Linkages between vulnerability, resilience, and adaptive capacity[J]. Global Environmental Change, 2006, 16(3):293-303. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027979106/
    [2] 朱震达.中国的脆弱生态带与土地荒漠化[J].中国沙漠, 1991, 11(4): 11-22. doi: 10.3321/j.issn:1000-694X.1991.04.008

    ZHU Z D. Fragile ecological zones and land desertification in China[J]. Journal of Desert Research, 1991, 11(4): 11-22. doi: 10.3321/j.issn:1000-694X.1991.04.008
    [3] SCHROTER D, CRAMER W, LEEMANS R, et al. Ecosystem service supply and vulnerability to global change in Europe[J]. Science, 2005, 310: 1333. doi: 10.1126/science.1115233
    [4] WRIGHT I J, REICH P B, WESTOBY M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats[J]. Functional Ecology, 2001, 15(4): 423-434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e0291018c0890499ca89534ebc5ac41
    [5] BRADSHAW A D. Evolutionary significance of phenotypic plasticity in plants[J]. Advances in Genetics, 1965, 13(1): 115-155. doi: 10.1016-S0065-2660(08)60048-6/
    [6] 康萨如拉, 牛建明, 张庆, 等.短花针茅叶片解剖结构及与气候因子的关系[J].草业学报, 2013, 22(1): 77-86. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201301010

    KANGSARULA, NIU J M, ZHANG Q, et al. Anatomical structure of Stipa breviflora leaves and its relationship with environmental factors[J]. Acta Prataculturae Sinica, 2013, 22(1): 77-86. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201301010
    [7] MOTT K A, GIBSON A C, O'LEARY J W. The adaptive significance of amphistomatic leaves[J]. Plant Cell & Environment, 1982, 5(6): 455-460. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/1365-3040.ep11611750
    [8] CAO D C, LI J W, HUANG Z Y, et al. Reproductive characteristics of a Populus euphratica population and prospects for its restoration in China [J/OL]. PLoS ONE, 2012, 7 (7): e39121. (2012-07-26) [2017-03-15]. http://doi.org/10.1371/journal.pone.0039121.
    [9] 黄晶晶, 井家林, 曹德昌, 等.不同林龄胡杨克隆繁殖根系分布特征及其构型[J].生态学报, 2013, 33(14): 4331-4342. http://d.old.wanfangdata.com.cn/Periodical/stxb201314013

    HUANG J J, JING J L, CAO D C, et al. Cloning root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis[J]. Acta Ecologica Sinica, 2013, 33(14): 4331-4342. http://d.old.wanfangdata.com.cn/Periodical/stxb201314013
    [10] 张现慧, 钟悦鸣, 谭天逸, 等.土壤水分动态对胡杨幼苗生长分配策略的影响[J].北京林业大学学报, 2016, 38(5): 92-99. doi: 10.13332/j.1000-1522.20150369

    ZHANG X H, ZHONG Y M, TAN T Y, et al. Effect of soil moisture dynamics on growth and allocation strategy of Populus euphratica seedlings[J]. Journal of Beijing Forestry University, 2016, 38(5): 92-99. doi: 10.13332/j.1000-1522.20150369
    [11] 吕爽, 张现慧, 张楠, 等.胡杨幼苗根系生长与构型对土壤水分的响应[J].西北植物学报, 2015, 35(5): 1005-1012. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201505021

    LV S, ZHANG X H, ZHANG N, et al. Response of root growth and architecture of Populus euphratica seedling on soil water[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5): 1005-1012. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201505021
    [12] 韩路, 王家强, 王海珍, 等.塔里木河上游胡杨种群结构与动态[J].生态学报, 2014, 34(16): 4640-4651. http://d.old.wanfangdata.com.cn/Periodical/stxb201416021

    HAN L, WANG J Q, WANG H Z, et al. The population structure and dynamics of Populus euphratica at the upper reaches of the Tarim River[J]. Acta Ecologica Sinica, 2014, 34(16): 4640-4651. http://d.old.wanfangdata.com.cn/Periodical/stxb201416021
    [13] 王海珍, 陈加利, 韩路, 等.地下水位对胡杨和灰胡杨叶绿素荧光光响应与光合色素含量的影响[J].中国沙漠, 2013, 33(4): 1054-1063. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201304012.htm

    WANG H Z, CHENG J L, HAN L, et al. Response of chlorophyll fluorescence parameters of Populus euphratica and Polulus pruinosa[J]. Journal of Desert Research, 2013, 33(4): 1054-1063. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201304012.htm
    [14] 王敏, 徐海量, 叶茂, 等.不同林龄胡杨径向生长量与地下水的关系[J].水土保持研究, 2017, 24(1): 357-360. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201701059

    WANG M, XU H L, YE M, et al. Relationship between different stand age Populus euphratica's radial growth and groundwater[J]. Research of Soil and Water Conservation, 2017, 24(1): 357-360. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201701059
    [15] 袁亚鹏, 赵阳, 赵传燕, 等.黑河下游不同生境胡杨叶片碳同位素组成特征[J].中国沙漠, 2015, 35(6): 1505-1511. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201506011

    YUAN Y P, ZHAO Y, ZHAO C Y, et al. Characteristics of foliar stable carbon isotope composition of Populus euphratica for different niche in the lower reach of the Heihe River[J]. Journal of Desert Research, 2015, 35(6): 1505-1511. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsm201506011
    [16] 丁伟, 杨振华, 张世彪, 等.青海柴达木地区野生胡杨叶的形态解剖学研究[J].中国沙漠, 2010, 30(6): 1411-1415. http://d.old.wanfangdata.com.cn/Periodical/zgsm201006025

    DING W, YANG Z H, ZHANG S B, et al. Morphological and anatomical structure of leaves on Populus euphratica Oliv. in Qaidam Basin[J]. Journal of Desert Research, 2010, 30(6): 1411-1415. http://d.old.wanfangdata.com.cn/Periodical/zgsm201006025
    [17] 夏延国, 董芳宇, 吕爽, 等.极端干旱区胡杨细根的垂直分布和季节动态[J].北京林业大学学报, 2015, 37(7): 37-44. doi: 10.13332/j.1000-1522.20150082

    XIA Y G, DONG F Y, LV S, et al. Vertical distribution and seasonal dynamics of fine roots in Populus euphratica plantation in the extremely drought area[J]. Journal of Beijing Forestry University, 2015, 37(7): 37-44. doi: 10.13332/j.1000-1522.20150082
    [18] 李芳兰, 包维楷.植物叶片形态解剖结构对环境变化的响应与适应[J].植物学报, 2005, 22(增刊): 118-127. http://www.cnki.com.cn/Article/CJFDTotal-ZWXT2005S1015.htm

    LI F L, BAO W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change[J]. Bulletin of Botany, 2005, 22(Suppl.): 118-127. http://www.cnki.com.cn/Article/CJFDTotal-ZWXT2005S1015.htm
    [19] 白潇, 李毅, 苏世平, 等.不同居群唐古特白刺叶片解剖特征对生境的响应研究[J].西北植物学报, 2013, 33(10): 1986-1993. doi: 10.7606/j.issn.1000-4025.2013.10.1986

    BAI X, LI Y, SU S P, et al. Response of leaf anatomical characteristics of Nitraria tangutorum Bobr. from different populations to habitats[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(10): 1986-1993. doi: 10.7606/j.issn.1000-4025.2013.10.1986
    [20] NAZ N, HAMEED M, NAWAZ T, et al. Structural adaptations in the desert halophyte Aeluropus lagopoides (Linn.) Trin. ex Thw. under high salinity[J]. Journal of Biological Research, 2013, 19: 150-164.
    [21] ASHTON P M S, OLANDER L P, BERLYN G P, et al. Changes in leaf structure in relation to crown position and tree size[J]. Canadian Journal of Botany, 2011, 76(7): 1180-1187.
    [22] VALLADARES F, WRIGHT S J, LASSO E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a panamanian rainforest[J]. Ecology, 2000, 81(7): 1925-1936. doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
    [23] ABRAMS M D, KUBISKE M E, MOSTOLLER S A. Relating wet and dry year ecophysiology to leaf structure in contrasting temperate tree species[J]. Ecology, 1994, 75(1): 123-133. doi: 10.2307/1939389
    [24] 黄振英, 吴鸿, 胡正海. 30种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报, 1997, 21(6): 521-530. doi: 10.3321/j.issn:1005-264X.1997.06.004

    HUANG Z Y, WU H, HU Z H. The structures of 30 species of psammophytes and their adaptation to the sandy desert environment in Xinjiang[J]. Chinese Journal of Plant Ecology, 1997, 21(6): 521-530. doi: 10.3321/j.issn:1005-264X.1997.06.004
    [25] 何冬梅, 刘庆, 林波, 等.人工针叶林林下11种植物叶片解剖特征对不同生境的适应性[J].生态学报, 2008, 28(10): 4739-4749. doi: 10.3321/j.issn:1000-0933.2008.10.015

    HE D M, LIU Q, LIN B, et al. Adaptation of leaf anatomical characteristics of eleven understory species to different environments in coniferous plantations[J]. Acta Ecologica Sinica, 2008, 28(10): 4739-4749. doi: 10.3321/j.issn:1000-0933.2008.10.015
    [26] 杨超, 梁宗锁.陕北撂荒地上优势蒿类叶片解剖结构及其生态适应性[J].生态学报, 2008, 28(10): 4732-4738. doi: 10.3321/j.issn:1000-0933.2008.10.014

    YANG C, LIANG Z S. Foliar anatomical structures and ecological adaptabilities of dominant artemisia species of early sere of succession on arable old land after being abandoned in loess hilly region[J]. Acta Ecologica Sinica, 2008, 28(10): 4732-4738. doi: 10.3321/j.issn:1000-0933.2008.10.014
    [27] 董芳宇, 王文娟, 崔盼杰, 等.胡杨叶片解剖特征及其可塑性对土壤条件响应[J].西北植物学报, 2016, 36(10): 2047-2057. doi: 10.7606/j.issn.1000-4025.2016.10.2047

    DONG F Y, WANG W J, CUI P J, et al. Plasticity response of leaf anatomical characteristics of Poplulus euphratica in different soil conditions[J]. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(10): 2047-2057. doi: 10.7606/j.issn.1000-4025.2016.10.2047
    [28] TILMAN D, KNOPS J, WEDIN D, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science, 1997, 277: 1300-1302. doi: 10.1126/science.277.5330.1300
    [29] NAEEM S, THOMPSON L J, LAWLER S P, et al. Declining biodiversity can alter the performance of ecosystems[J]. Nature, 1994, 368: 734-737. doi: 10.1038/368734a0
    [30] 周茅先, 肖洪浪, 罗芳, 等.额济纳三角洲地下水水盐特征与植被生长的相关研究[J].中国沙漠, 2004, 24(4): 431-436. doi: 10.3321/j.issn:1000-694X.2004.04.009

    ZHOU M X, XIAO H L, LUO F, et al. Groundwater salinity characters and its relationship with vegetation growth in Ejin Delta[J]. Journal of Desert Research, 2004, 24(4): 431-436. doi: 10.3321/j.issn:1000-694X.2004.04.009
    [31] 安卓, 牛得草, 文海燕, 等.氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响[J].植物生态学报, 2011, 35(8): 801-807. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201108002

    AN Z, NIU D C, WEN H Y, et al. Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China[J]. Chinese Journal of Plant Ecology, 2011, 35(8): 801-807. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201108002
    [32] 毛伟, 李玉霖, 崔夺, 等.沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J].植物生态学报, 2014, 38(2): 125-133. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201402004

    MAO W, LI Y L, CUI D, et al. Biomass allocation response of species with different life history strategies to nitrogen and water addition in sandy grassland in Inner Mongolia[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 125-133. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201402004
    [33] 闫国永, 王晓春, 邢亚娟, 等.兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J].北京林业大学学报, 2016, 38(4): 36-43. doi: 10.13332/j.1000-1522.20150433

    YAN G Y, WANG X C, XING Y J, et al. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. doi: 10.13332/j.1000-1522.20150433
    [34] 耿宇鹏, 张文驹, 李博, 等.表型可塑性与外来植物的入侵能力[J].生物多样性, 2004, 12(4): 447-455. doi: 10.3321/j.issn:1005-0094.2004.04.009

    GENG Y P, ZHANG W J, LI B, et al. Phenotypic plastictiy and invasiveness of alien plants[J]. Biodiversity Science, 2004, 12(4): 447-455. doi: 10.3321/j.issn:1005-0094.2004.04.009
    [35] 徐飞, 郭卫华, 徐伟红, 等.刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J].北京林业大学学报, 2010, 32(1): 24-30. http://j.bjfu.edu.cn/article/id/9311

    XU F, GUO W H, XU W H, et al. Effects of water stress on morphology, biomass allocation and photosynthesis in Robinia pseudoacacia seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 24-30. http://j.bjfu.edu.cn/article/id/9311
    [36] 马建静, 吉成均, 韩梅, 等.青藏高原高寒草地和内蒙古高原温带草地主要双子叶植物叶片解剖特征的比较研究[J].中国科学(生命科学), 2012, 42(2): 158-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201202008

    MA J J, JI C J, HAN M, et al. Comparative analyses of leaf anatomy of dicotyledonous species in Tibetan and Inner Mongolian grasslands[J]. Scientia Sinica (Vitae), 2012, 42(2): 158-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201202008
    [37] 周洪华, 李卫红, 木巴热克·阿尤普, 等.荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应[J].植物生态学报, 2012, 36(1): 19-29. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201201003

    ZHOU H H, LI W H, AYUP M, et al. Xylem hydraulic conductivity and embolism properties of desert riparian forest plants and its response to drought stress[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 19-29. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201201003
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  2350
  • HTML全文浏览量:  392
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-21
  • 修回日期:  2017-04-05
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回