高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaHCO3胁迫对转TaLEA基因山新杨生长及光合、叶绿素荧光特性的影响

孙延爽 邢宝月 杨光 刘桂丰

孙延爽, 邢宝月, 杨光, 刘桂丰. NaHCO3胁迫对转TaLEA基因山新杨生长及光合、叶绿素荧光特性的影响[J]. 北京林业大学学报, 2017, 39(10): 33-41. doi: 10.13332/j.1000-1522.20170099
引用本文: 孙延爽, 邢宝月, 杨光, 刘桂丰. NaHCO3胁迫对转TaLEA基因山新杨生长及光合、叶绿素荧光特性的影响[J]. 北京林业大学学报, 2017, 39(10): 33-41. doi: 10.13332/j.1000-1522.20170099
SUN Yan-shuang, XING Bao-yue, YANG Guang, LIU Gui-feng. Effects of NaHCO3 stress on growth, photosynthesis and chlorophyll fluorescence characteristics in Populus davidiana × P. bolleana overexpressed TaLEA[J]. Journal of Beijing Forestry University, 2017, 39(10): 33-41. doi: 10.13332/j.1000-1522.20170099
Citation: SUN Yan-shuang, XING Bao-yue, YANG Guang, LIU Gui-feng. Effects of NaHCO3 stress on growth, photosynthesis and chlorophyll fluorescence characteristics in Populus davidiana × P. bolleana overexpressed TaLEA[J]. Journal of Beijing Forestry University, 2017, 39(10): 33-41. doi: 10.13332/j.1000-1522.20170099

NaHCO3胁迫对转TaLEA基因山新杨生长及光合、叶绿素荧光特性的影响

doi: 10.13332/j.1000-1522.20170099
基金项目: 

“863”国家高技术研究发展计划项目 2011AA100201

详细信息
    作者简介:

    孙延爽。主要研究方向:林木抗逆基因工程育种。Email: 343699582@qq.com  地址:150040  黑龙江省哈尔滨市香坊区和兴路51号东北林业大学林木遗传育种国家重点实验室

    责任作者:

    刘桂丰,教授,博士生导师。主要研究方向:林木遗传改良和林木抗逆基因工程育种。Email: liuguifeng@126.com   地址:同上

  • 中图分类号: S722.3+6

Effects of NaHCO3 stress on growth, photosynthesis and chlorophyll fluorescence characteristics in Populus davidiana × P. bolleana overexpressed TaLEA

  • 摘要: 为了筛选耐苏打盐渍土的转基因杨树优良株系, 以苏打盐渍土的主要成分NaHCO3胁迫处理转TaLEA基因的山新杨各株系与对照(NT),测定不同株系的苗高和地径等生长性状,测定净光合速率(Pn)、胞间CO2浓度(Ci)、气孔导度(Gs)、蒸腾速率(Tr)等光合参数以及最大光化学效率(Fv/Fm)、光化学猝灭系数(qP)、非光化学猝灭系数(NPQ)、实际光化学电子产量(ΦPSII)等叶绿素荧光动力学参数,利用染色法分别比较各株系的超氧离子和过氧化氢的累积情况,进而综合评价不同株系对NaHCO3胁迫的响应。结果表明,NaHCO3胁迫处理前、后各株系的苗高和地径生长量发生明显分化,由处理前的差异不显著,到处理20 d后的显著,转基因株系的苗高、地径普遍较对照高,表现突出的是转基因株系SL2号,其平均苗高和地径分别较对照提高了17.4%、15.7%;对照的盐害指数是转基因株系的3.3倍,并且转基因株系的平均存活率是对照的2.8倍。各转基因株系的光合参数和荧光参数也较对照增强,PnTr在胁迫20 d后转基因株系较对照分别高了237.38%、649.02%,GsCi在胁迫15 d时转基因株系较对照分别高了119.05%、24.56%,其中SL2号转基因株系较对照分别提高150%、25.81%。各转基因株系的Fv/Fm平均为0.68,对照只有0.45,前者的qP和ΦPSII只略高于后者,后者的NPQ却是前者的6倍。转基因株系的超氧离子和过氧化氢累积量均少于对照。在相同的碱胁迫环境下,转基因山新杨,尤其是SL2,能保持较快的生长量、较强的光合能力和较低的ROS水平,初步选择其为耐苏打盐渍土的杨树转基因优良株系。

     

  • 图  1  碱性盐害级值

    A.0级无盐害症状;B.1级轻度盐害(有部分叶尖、叶缘变黄);C.2级中度盐害(有大约1/2的叶片、叶缘焦枯);D.3级重度盐害(大部分叶片、叶缘焦枯或脱落);E.4级极重度盐害(复水后植株死亡)。

    Figure  1.  Level of alkaline salt stress

    A, symptom of 0 salt injury; B, level 1 for mild salt damage (the tip of leaf or leaf margin turned yellow); C, level 2 for moderate salt damage (about 1/2 blade or leaf margin turned withered); D, level 3 for severe salt damage (most of the leaf, leaf margin turned withered or was off); E, level 4 for extremely severe salt damage (plant dead after rewatering).

    图  2  NaHCO3胁迫对叶片光合参数的影响

    A.叶片的净光合速率(Pn);B.胞间CO2浓度(Ci);C.蒸腾速率(Tr);D.气孔导度(Gs)。A, net photosynthetic rate (Pn); B, intercellular CO2 concentration (Ci); C, transpiration rate (Tr); D, stomatal conductance (Gs).

    Figure  2.  Effects of NaHCO3 stress on photosynthetic parameters of leaves

    图  3  NaCHO3胁迫对叶片叶绿素荧光动力学参数的影响

    A.最大光化学效率(Fv/Fm);B.光化学猝灭系数(qP);C.非光化学猝灭系数(NPQ);D.实际光化学电子产量(ΦPSII)。

    Figure  3.  Effects of NaCHO3 stress on chlorophyll fluorescence kinetics parameters of leaves

    A, maximum photochemical efficiency (Fv/Fm); B, photochemical quenching coefficient (qP); C, non-photochemical quenching coefficient (NPQ); D, actual photochemical electron yield (ΦPSII).

    图  4  NaHCO3胁迫下转基因山新杨与NT细胞内超氧离子累积比较

    Figure  4.  Comparison of superoxide anion accumulation in the cells of transgenic lines and NT under NaHCO3 stress

    图  5  NaHCO3胁迫下转基因山新杨与NT细胞内过氧化氢累积比较

    Figure  5.  Comparison of hydrogen peroxide accumulation in transgenic poplar and NT cells under NaHCO3 stress

    表  1  NaHCO3胁迫前后高生长比较

    Table  1.   Comparison in height growth before and after NaHCO3 stress

    株系
    Line
    胁迫前、后平均苗高
    Average height before and after stress/cm
    非胁迫条件下
    平均苗高
    Average height
    without stress/cm
    NaHCO3对高生长的
    影响Effect of
    NaHCO3 on height
    growth/%
    胁迫前
    Before stress
    胁迫后
    After stress
    绝对高生长
    Absolute height growth
    NT 85.55±3.67 122.11±5.02 c 36.55±5.40 b 147.78±4.42 17.37±2.07ab
    SL1 84.33±2.36 130.17±2.79 bc 46.00±8.38 ab 147.17±1.01 11.55±1.53ab
    SL2 88.67±3.21 143.33±7.23 a 54.44±6.16 a 149.67±8.21 4.21±1.75d
    SL3 85.33±2.60 128.89±6.50 bc 43.56±5.54 ab 145.00±4.58 10.96±7.31bc
    SL4 85.56±2.14 122.19±2.72 c 37.08±3.83 b 150.67±5.69 18.80±4.36 a
    SL5 86.30±4.39 132.89±6.44 b 46.92±7.87 ab 139.22±5.42 4.57±1.20 cd
    SL6 87.05±1.25 127.22±3.53 bc 40.17±2.42 b 143.17±2.56 11.10±3.59ab
    平均Mean 86.11±2.80 129.54±4.89 43.53±5.66 146.09±4.55 11.21±2.73
    注:不同小写字母表示在P < 0.05水平上差异显著。下同。Notes:different lowercase letters mean significant differences at P < 0.05 level. Same as below.
    下载: 导出CSV

    表  2  NaHCO3胁迫前后地径生长比较

    Table  2.   Comparison in ground diameter growth before and after NaHCO3 stress

    株系
    Line
    胁迫前、后平均地径
    Average ground diameter before and after stress/mm
    非胁迫条件下
    平均地径Mean
    ground diameter
    without stress/mm
    NaHCO3对地径生长
    的影响Effect of
    NaHCO3 on ground
    diameter growth/%
    胁迫前
    Before stress
    胁迫后
    After stress
    绝对地径生长
    Absolute ground diameter growth
    NT 2.18±0.017 6.48±0.133 c 4.30±0.51 7.53±0.59 13.57±7.71
    SL1 2.16±0.10 7.22±0.18 ab 5.06±0.15 8.18±0.63 11.68±8.57
    SL2 2.23±0.036 7.50±0.055 a 5.27±0.38 8.49±0.42 11.60±4.02
    SL3 2.04±0.058 6.80±0.084 bc 4.77±0.26 7.88±0.63 13.24±7.11
    SL4 2.18±0.079 6.92±0.38 bc 4.68±0.35 8.04±0.46 13.87±5.64
    SL5 2.18±0.085 6.71±0.36 c 4.53±0.78 7.99±0.47 15.64±8.71
    SL6 2.20±0.046 6.79±0.26 bc 4.58±0.35 7.96±0.49 14.50±6.86
    平均Mean 2.17±0.063 6.92±0.23 4.74±0.40 8.01±0.52 13.44±6.94
    下载: 导出CSV

    表  3  碱性盐害指数及存活率

    Table  3.   Index of salt-alkaline stress and survival rate

    株系
    Line
    碱害指数
    Index of salt-alkaline stress
    存活率
    Survival rate/%
    NT 0.79 30
    SL1 0.13 87
    SL2 0.28 100
    SL3 0.30 80
    SL4 0.18 90
    SL5 0.22 90
    SL6 0.34 62
    下载: 导出CSV
  • [1] 马驰.松嫩平原土地盐碱化研究[J].吉林农业大学学报, 2014, 36(3):333-337. http://d.old.wanfangdata.com.cn/Periodical/jlnydxxb201403015

    MA C. Research on soil salinization in Songnen Plain[J]. Journal of Jilin Agricultural University, 2014, 36(3):333-337. http://d.old.wanfangdata.com.cn/Periodical/jlnydxxb201403015
    [2] 张晓光, 黄标, 梁正伟, 等.松嫩平原西部土壤盐碱化特征研究[J].土壤, 2013, 45(2):1332-1338. http://d.old.wanfangdata.com.cn/Periodical/tr201302023

    ZHANG X G, HUANG B, LIANG Z W, et al. Study on salinization characteristics of surface soil in western Songnen Plain[J]. Soils, 2013, 45(2):1332-1338. http://d.old.wanfangdata.com.cn/Periodical/tr201302023
    [3] 刘正祥, 张华新, 杨秀艳, 等.林木耐盐碱相关基因与基因工程研究进展[J].世界林业研究, 2012, 25(5):11-17. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201205003

    LIU Z X, ZHANG H X, YANG X Y, et al. Research advances in gene and genetic engineering for saline-alkaline tolerance of forest trees[J]. World Forestry Research, 2012, 25(5):11-17. http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201205003
    [4] ZHAO X, ZHAN L P, ZOU X Z. Improvement of cold tolerance of the half-high bush Northland blueberry by transformation with the LEA gene from Tamarix androssowii[J]. Plant Growth Regulation, 2011, 63(1):13-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3893487f7ceac0bb725e5686db22a39
    [5] 师静, 刘美芹, 史军娜, 等.沙冬青胚胎晚期发生丰富蛋白基因序列及表达特性分析[J].北京林业大学学报, 2012, 34(4):114-119. http://j.bjfu.edu.cn/article/id/9786

    SHI J, LIU M Q, SHI J N, et al. Sequence analysis and expression pattern of AmLEA14 encoding a late embryogenesis abundant protein in Ammopiptanthus mongolicus[J]. Journal of Beijing Forestry University, 2012, 34(4):114-119. http://j.bjfu.edu.cn/article/id/9786
    [6] ZHAN J Y, KONG L F, LIU Z P, et al. Stress-induced expression Arabidopsis with a Dehydrin LEA protein from Cleistogenes songorica, a xerophytic desert grass[J]. Plant Omics, 2015, 8(6):485-492.
    [7] SUN Y S, HUANG H J, JIANG J, et al. Improved salt tolerance of Populus davidiana×P. bolleana overexpressed LEA from Tamarix androssowii[J]. Journal of Forestry Research, 2014, 25(4):813-818. doi: 10.1007/s11676-014-0529-z
    [8] 罗子敬, 孙宇涵, 卢楠, 等.杨树耐盐机制及转基因研究进展[J].核农学报, 2017, 31(3):482-492. http://d.old.wanfangdata.com.cn/Periodical/hnxb201703009

    LUO Z J, SUN Y H, LU N, et al. Research advances on salt-tolerance mechanism and genetic transformation of poplar[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(3):482-492. http://d.old.wanfangdata.com.cn/Periodical/hnxb201703009
    [9] JAMBUNATHAN N. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants[J]. Methods in Molecular Biology, 2010, 639(1):291-297. http://cn.bing.com/academic/profile?id=f663812894f822f83ae081dfbeaf312b&encoded=0&v=paper_preview&mkt=zh-cn
    [10] 倪妍妍, 常二梅, 刘建锋, 等.不同树龄侧柏接穗光合生理的比较研究[J].西北林学院学报, 2017, 32(1):19-24. doi: 10.3969/j.issn.1001-7461.2017.01.03

    NI Y Y, CHANG E M, LIU J F, et al. Comparison on photosynthetic physiology in various age scions of Platycladus orientalis[J]. Chinese Academy of Forestry, 2017, 32(1):19-24. doi: 10.3969/j.issn.1001-7461.2017.01.03
    [11] 尤鑫, 龚吉蕊.叶绿素荧光动力学参数的意义及实例辨析[J].西部林业科学, 2012, 41(5):90-94. doi: 10.3969/j.issn.1672-8246.2012.05.017

    YOU X, GONG J R. Significance and application of chlorophyll fluorescence dynamics process parameters[J]. Journal of West China Forestry Science, 2012, 41(5):90-94. doi: 10.3969/j.issn.1672-8246.2012.05.017
    [12] 王智明, 张峰举, 许兴.植物耐盐生理生化指标研究进展[J].湖北农业科学, 2014, 53(7):1493-1496. doi: 10.3969/j.issn.0439-8114.2014.07.003

    WANG Z M, ZHANG F J, XU X. Advances on physiological and biochemical indexes of salt tolerance in plant[J]. Hubei Agricultural Sciences, 2014, 53(7):1493-1496. doi: 10.3969/j.issn.0439-8114.2014.07.003
    [13] WANG L, ZHANG J L, WANG D, et al. Assessment of salt tolerance in transgenic potato carrying AtNHX1 gene[J].Crop Science, 2013, 53(6):2643-2651. doi: 10.2135/cropsci2013.03.0179
    [14] WANG F W, WANG C, SUN Y, et al. Overexpression of vacuolar proton pump ATPase (V-H+ -ATPase) subunits B, C and H confers tolerance to salt and saline-alkali stresses in transgenic alfalfa (Medicago sativa L.)[J]. Journal of Integrative Agriculture, 2016, 15(10):2279-2289. doi: 10.1016/S2095-3119(16)61399-0
    [15] 才华, 宋婷婷, 张大洋. rd29A和CaMV-35S启动子调控转AtDREB2A苜蓿耐碱性分析[J].东北农业大学学报, 2016, 47(9):16-23. doi: 10.3969/j.issn.1005-9369.2016.09.003

    CAI H, SONG T T, ZHANG D Y. Alkaline tolerance analysis of transgenic alfalfa with AtDREB2A gene regulated by rd29A and CaMV-35S promoter[J]. Journal of Northeast Agricultural University, 2016, 47(9):16-23. doi: 10.3969/j.issn.1005-9369.2016.09.003
    [16] DALAL M, TAYAL D, CHINNUSAMY V, et al. Abiotic stress and ABA-inducible group 4 LEA from Brassica napus plays a key role in salt and drought tolerance[J]. Journal of Biotechnology, 2008, 139(2):137-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=74b85cd7e966d3682afc4169b80ab6cf
    [17] YU J, LAI Y, WU X, et al. Overexpression of OsEm1 encoding a group Ⅰ LEA protein confers enhanced drought tolerance in rice[J]. Biochemical and Biophysical Research Communications, 2016, 478(2):703-709. doi: 10.1016/j.bbrc.2016.08.010
    [18] 周珩, 郭世荣, 邵慧娟, 等.等渗NaCl和Ca(NO3)2胁迫对黄瓜幼苗生长和生理特性的影响[J].生态学报, 2014, 34(7):1880-1890. http://d.old.wanfangdata.com.cn/Periodical/stxb201407028

    ZHOU Y, GUO S R, SHAO H J, et al. Effects of iso-osmotic Ca(NO3)2 and NaCl stress on growth and physiological characteristics of cucumber seedlings[J]. Acta Ecologica Sinica, 2014, 34(7):1880-1890. http://d.old.wanfangdata.com.cn/Periodical/stxb201407028
    [19] 卢闯, 逄焕成, 赵长海, 等.水分胁迫下施磷对潮土玉米苗期叶片光合速率、保护酶及植株养分含量的影响[J].中国生态农业学报, 2017, 25(2):239-246. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201702011

    LU C, FENG H C, ZHAO C H, et al. Effect of phosphorus on leaf net photosynthesis, protective enzyme activity and nutrient uptake of maize at seedling stage in fluvo-aquic soils under water stress[J]. Chinese Journal of Eco-Agriculture, 2017, 25(2):239-246. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201702011
    [20] 许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯, 1997, 33(4):241-244. doi: 10.1063-1.1913612/

    XU D Q. Some problems in stomatal limitation analysis of photosynthesis[J]. Plant Physiology Communications, 1997, 33(4): 241-244. doi: 10.1063-1.1913612/
    [21] MAXWELL K, JOHNSON G. Chlorophyll fluorescence: a practical guide[J]. Journal of Experimental Botany, 2000, 51(345):659-668. doi: 10.1093/jexbot/51.345.659
    [22] 寇江涛, 康文娟, 苗阳阳, 等.外源EBR对NaCl胁迫下紫花苜蓿幼苗微量元素吸收及叶绿素荧光动力学参数的影响[J].中国生态农业学报, 2016, 24(3):345-355. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201603009

    KOU J T, KANG W J, MIAO Y Y, et al. Effect of exogenous 2, 4-epibrassinolide on trace element absorption and chlorophyll fluorescence of Medicago sativa L. seedlings under NaCl stress[J]. Chinese Journal of Eco-Agriculture, 2016, 24(3):345-355. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201603009
    [23] 徐焕文, 刘宇, 姜静, 等.盐胁迫对白桦光合特性及叶绿素荧光参数的影响[J].西南林业大学学报, 2015, 35(4):21-26. http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb201504004

    XU H W, LIU Y, JIANG J, et al. Changes of photosynthetic characteristics and chlorophyll fluorescence parameters of Betula platyphylla under salt stress[J]. Journal of Southwest Forestry University, 2015, 35(4):21-26. http://d.old.wanfangdata.com.cn/Periodical/xnlxyxb201504004
    [24] 李旭新, 刘炳响, 郭智涛, 等. NaCl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化[J].应用生态学报, 2013, 24(9):2479-2484. http://d.old.wanfangdata.com.cn/Periodical/yystxb201309012

    LI X X, LIU B X, GUO Z T, et al. Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves[J]. Chinese Journal of Applied Ecology, 2013, 24(9):2479-2484. http://d.old.wanfangdata.com.cn/Periodical/yystxb201309012
    [25] 张守仁, 高荣孚.光胁迫下杂种杨无性系光合生理生态特性的研究[J].植物生态学报, 2000, 24(5):528-533. doi: 10.3321/j.issn:1005-264X.2000.05.004

    ZHANG S R, GAO R F. Ecophysiological characteristics of photosynthesis of hybrid poplar clones under light stress[J]. Acta Phytoecologica Sinica, 2000, 24(5):528-533. doi: 10.3321/j.issn:1005-264X.2000.05.004
    [26] 施征, 史胜青, 姚洪军, 等.植物线粒体中活性氧的产生及其抗氧化系统[J].北京林业大学学报, 2009, 31(1):150-154. doi: 10.3321/j.issn:1000-1522.2009.01.026

    SHI Z, SHI S Q, YAO H J, et al. Production of ROS and its antioxidant system in plant mitochondria[J]. Journal of Beijing Forestry University, 2009, 31(1):150-154. doi: 10.3321/j.issn:1000-1522.2009.01.026
    [27] 戴海芳, 武辉, 阿曼古丽·买买提阿力, 等.不同基因型棉花苗期耐盐性分析及其鉴定指标筛选[J].中国农业科学, 2014, 47(7):1290-1300. doi: 10.3864/j.issn.0578-1752.2014.07.005

    DAI H F, WU H, MAIMAITIALI A, et al. Analysis of salt-tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes[J]. Scientia Agricultura Sinica, 2014, 47(7):1290-1300. doi: 10.3864/j.issn.0578-1752.2014.07.005
    [28] 李扬, 刘关君, 曲春浦, 等.西伯利亚蓼PsLEA基因的克隆及在NaHCO3胁迫下的表达[J].分子植物育种, 2010, 8(2):276-282. http://d.old.wanfangdata.com.cn/Periodical/fzzwyz201002011

    LI Y, LIU G J, QU C P, et al. Cloning of PsLEA gene from Polygonum sibiricum Laxm. and its expression under NaHCO3 stress[J]. Molecular Plant Breeding, 2010, 8(2):276-282. http://d.old.wanfangdata.com.cn/Periodical/fzzwyz201002011
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  977
  • HTML全文浏览量:  219
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-24
  • 修回日期:  2017-05-09
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回