Advanced search
    ZHANG Jing, LI Min, YANG Hang, SUN De-zhi. Adsorption properties and mechanism of orthophosphate adsorption on soils from the Yeyahu Wetland of Beijing.[J]. Journal of Beijing Forestry University, 2013, 35(2): 118-124.
    Citation: ZHANG Jing, LI Min, YANG Hang, SUN De-zhi. Adsorption properties and mechanism of orthophosphate adsorption on soils from the Yeyahu Wetland of Beijing.[J]. Journal of Beijing Forestry University, 2013, 35(2): 118-124.

    Adsorption properties and mechanism of orthophosphate adsorption on soils from the Yeyahu Wetland of Beijing.

    More Information
    • Received Date: December 31, 1899
    • Revised Date: December 31, 1899
    • Published Date: March 29, 2013
    • In this study, the adsorption kinetics, isothermal adsorption model of orthophosphate (P) on soil from the Yeyahu Wetland of Beijing were investigated. The effects of pH and organic matter content on P adsorption were also analyzed. The results showed that the P adsorption equilibrium time was about five hours and Langmuir cross-shaped isothermal adsorption model well fitted the experiment data. pH had a significant influence on P adsorption. The P adsorption capability achieved the maximum value when the initial pH of the incubation solution was 8. Soil P adsorption capability increased with dissolved organic matters (DOM) increasing. When the concentration of DOM was 100 mg/L, the P adsorption capability reached the highest value and increased by 37.81%, 35.52% and 64.98%, respectively, for soil samples No. 3, 5 and 7 when compared with no DOM experiments. The results of XRD and FT-IR analysis of soil samples before and after P adsorption experiments reveal that kaolinite involved in P adsorption process and it is a key clay component for P adsorption on the Yeyahu Wetland soil of Beijing.
    • Related Articles

      [1]Kang Xiangyang. Thoughts on the development of forest tree breeding towards intelligent molecular design breeding in China[J]. Journal of Beijing Forestry University, 2024, 46(3): 1-7. DOI: 10.12171/j.1000-1522.20230338
      [2]Kang Xiangyang. On conventional and unconventional tree breeding and their relationships[J]. Journal of Beijing Forestry University, 2023, 45(6): 1-7. DOI: 10.12171/j.1000-1522.20230042
      [3]Kang Xiangyang. Thoughts on tree breeding strategies[J]. Journal of Beijing Forestry University, 2019, 41(12): 15-22. DOI: 10.12171/j.1000-1522.20190412
      [4]Li Jiewen, Du Yunpeng, Jia Guixia, Zhang Dongmei. Genetic relationship analysis and distribution characteristics of some wild Lilium species native to China[J]. Journal of Beijing Forestry University, 2019, 41(10): 74-82. DOI: 10.13332/j.1000-1522.20180345
      [5]Pan Liqin, Li Jiyuan, Li Shaocui, Fan Zhengqi, Yin Hengfu, He Libo. Development of SSR markers based on transcriptome of Camellia japonica and analysis of genetic relationship[J]. Journal of Beijing Forestry University, 2019, 41(7): 111-120. DOI: 10.13332/j.1000-1522.20190101
      [6]Zheng Baoqiang, Zhu Shenglei, Li Kui, Miao Kun, Wang Yan. Analysis on breeding value of native Dendrobium species in China[J]. Journal of Beijing Forestry University, 2018, 40(4): 102-108. DOI: 10.13332/j.1000-1522.20170341
      [7]MIAO Yu-bo, ZHU Xiao-mei, LI Zhi-juan, JIA Feng-ling, LI Wei. Genetic evaluation of breeding resources of Pinus sylvestris var. mongolica from different improved generations[J]. Journal of Beijing Forestry University, 2017, 39(12): 71-78. DOI: 10.13332/j.1000-1522.20170194
      [8]HAN Xin, CHENG Fang-yun, XIAO Jia-jia, WANG Yue-lan, ZHANG Dong, WANG Ying, ZHONG Yuan. Crosses of Paeonia ostii Feng Dan Bai'as maternal parents and an analysis on the potential in tree peony breeding[J]. Journal of Beijing Forestry University, 2014, 36(4): 121-125. DOI: 10.13332/j.cnki.jbfu.2014.04.022
      [9]ZHOU Cheng-li, SHI Jun-yi, CHEN Xiao-ming, YI Chuan-hui, SHI Lei. Large-scale artificial breeding of Kallima inachus Doubleday[J]. Journal of Beijing Forestry University, 2006, 28(5): 107-113.
      [10]WANG Xian, ZHANG Qi-xiang, YANG Qiu-sheng, CHAI Yong-sheng. Genetic relationship of Lagerstroemia indica by AFLP.[J]. Journal of Beijing Forestry University, 2005, 27(1): 59-63.
    • Cited by

      Periodical cited type(4)

      1. 李俊峰. 机械设备无损检测技术与安全分析. 造纸装备及材料. 2022(09): 16-18 .
      2. 李焕,管成,张厚江,刘晋浩,周建徽,辛振波. 足尺胶合板弹性模量的两对边简支振动检测研究. 北京林业大学学报. 2021(02): 138-149 . 本站查看
      3. 管成,辛振波,刘晋浩,张厚江,周建徽,李焕,柳苏洋. 3种边界条件下足尺定向刨花板的模态灵敏度和振动模态研究. 北京林业大学学报. 2021(12): 105-115 . 本站查看
      4. 李亦珂. 自动化计算机控制系统在相关人造板设备中的应用分析. 林产工业. 2020(04): 109-112 .

      Other cited types(4)

    Catalog

      Article views (1488) PDF downloads (59) Cited by(8)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return