Citation: | Liu Jiazheng, Wang Xuefeng, Wang Tian. Image recognition of tree species based on multi feature fusion and CNN model[J]. Journal of Beijing Forestry University, 2019, 41(11): 76-86. DOI: 10.13332/j.1000-1522.20180366 |
[1] |
王昌腾. 基于应用型人才培养提高学生树木识别教改探索[J]. 现代园艺, 2018(13):165−166.
Wang C T. Exploration on the teaching reform of improving students'tree recognition based on the cultivation of applied talents[J]. Modern Horticulture, 2018(13): 165−166.
|
[2] |
Richter R, Reu B, Wirth C, et al. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52: 464−474. doi: 10.1016/j.jag.2016.07.018
|
[3] |
Pham L T H, Brabyn L, Ashraf S. Combining QuickBird, LiDAR, and GIS topography indices to identify a single native tree species in a complex landscape using an object-based classification approach[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 50: 187−197. doi: 10.1016/j.jag.2016.03.015
|
[4] |
陈明健, 陈志泊, 杨猛, 等. 叶片传统特征和距离矩阵与角点矩阵相结合的树种识别算法[J]. 北京林业大学学报, 2017, 39(2):108−116.
Chen M J, Chen Z B, Yang M, et al. A tree species identification algorithm combining traditional leaf characteristics and distance matrix with corner matrix[J]. Journal of Beijing Forestry University, 2017, 39(2): 108−116.
|
[5] |
李可心, 戚大伟, 牟洪波, 等. 基于灰度共生矩阵与SOM神经网络的树皮纹理特征识别[J]. 森林工程, 2017, 33(3):24−27. doi: 10.3969/j.issn.1006-8023.2017.03.006
Li K X, Qi D W, Mou H B, et al. Bark texture recognition based on gray level co-occurrence matrix and SOM neural network[J]. Forest Engineering, 2017, 33(3): 24−27. doi: 10.3969/j.issn.1006-8023.2017.03.006
|
[6] |
杨洋. 基于小波变换及SVM理论的树木种类识别研究[D]. 哈尔滨: 东北林业大学, 2017.
Yang Y. Research on tree species recognition based on wavelet transform and SVM theory[D]. Harbin: Northeast Forestry University, 2017.
|
[7] |
于海鹏, 刘一星, 刘镇波. 基于图像纹理特征的木材树种识别[J]. 林业科学, 2007,43(4):77−81,146−147. doi: 10.3321/j.issn:1001-7488.2007.04.013
Yu H P, Liu Y X, Liu Z B. Wood species identification based on image texture features[J]. Forestry Science, 2007,43(4): 77−81,146−147. doi: 10.3321/j.issn:1001-7488.2007.04.013
|
[8] |
孙伶君, 汪杭军, 祁亨年. 基于分块LBP的树种识别研究[J]. 北京林业大学学报, 2011, 33(4):107−112.
Sun L J, Wang H J, Qi H N. Study on tree species identification based on block LBP[J]. Journal of Beijing Forestry University, 2011, 33(4): 107−112.
|
[9] |
Bertrand S, Ameur R B, Cerutti G, et al. Bark and leaf fusion systems to improve automatic tree species recognition[J]. Ecological Informatics, 2018, 46: 57−73. doi: 10.1016/j.ecoinf.2018.05.007
|
[10] |
Zhao Z Q, Ma L H, Cheung Y, et al. ApLeaf: an efficient android-based plant leaf identification system[J]. Neurocomputing, 2015, 151: 1112−1119. doi: 10.1016/j.neucom.2014.02.077
|
[11] |
赵鹏超, 戚大伟. 基于卷积神经网络和树叶纹理的树种识别研究[J]. 森林工程, 2018, 34(1):56−59. doi: 10.3969/j.issn.1006-8023.2018.01.013
Zhao P C, Qi D W. Study on tree species identification based on convolution neural network and leaf texture[J]. Forest Engineering, 2018, 34(1): 56−59. doi: 10.3969/j.issn.1006-8023.2018.01.013
|
[12] |
Li Q, You X, Li K, et al. Deep hierarchical feature extraction algorithm[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(2): 127−136.
|
[13] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278−2324. doi: 10.1109/5.726791
|
[14] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge: Massachusetts Institute of Technology Press, 2012: 1106−1114.
|
[15] |
Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington D C: IEEE Computer Society, 2009: 248−255.
|
[16] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C/OL]. arXiv, 2014[2018−05−06]. https://arxiv.org/pdf/1409.1556.pdf.
|
[17] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Washington D C: IEEE Computer Society Press, 2015: 1−9.
|
[18] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition, Vegas: IEEE, 2016: 770−778.
|
[19] |
李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述[J]. 计算机应用, 2016, 36(9):2508−2515, 2565. doi: 10.11772/j.issn.1001-9081.2016.09.2508
Li Y D, Hao Z B, Lei H. A review of convolutional neural networks[J]. Computer applications, 2016, 36(9): 2508−2515, 2565. doi: 10.11772/j.issn.1001-9081.2016.09.2508
|
[20] |
Zeiler M D, Fergus R. Stochastic pooling for regularization of deep convolutional neural networks[C/OL]. arXiv, 2013 [2018−04−16]. https://arxiv.org/pdf/1301.3557.pdf.
|
[21] |
Nair V, Hinton G E, Farabet C. Rectified linear units improve restricted Boltzmannmachines[C]//Processing of the 27th International Conference on Machine Learning. Haifa: International Machine Learning Society (IMLS), 2010: 807−714.
|
[22] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229−1251. doi: 10.11897/SP.J.1016.2017.01229
Zhou F Y, Jin L P, Dong J. Summary of convolution neural network research[J]. Acta Computer Science, 2017, 40(6): 1229−1251. doi: 10.11897/SP.J.1016.2017.01229
|
[23] |
刘涛, 周先春, 严锡君. 多通道多模式融合LBP特征的纹理相似度计算[J]. 计算机应用研究, 2018, 35(12):3803−3806. doi: 10.3969/j.issn.1001-3695.2018.12.063
Liu T, Zhou X C, Yan X J. Computation of texture similarity based on multi-channel and multi-mode LBP features[J]. Computer Applications, 2018, 35(12): 3803−3806. doi: 10.3969/j.issn.1001-3695.2018.12.063
|
[24] |
尚俊. 基于HOG特征的目标识别算法研究[D]. 武汉: 华中科技大学, 2012.
Shang J. Target recognition algorithm based on HOG features[D]. Wuhan: Huazhong University of Science and Technology, 2012.
|
[25] |
张盼. 基于混淆矩阵的分类器选择集成方法研究[D]. 焦作: 河南理工大学, 2016.
Zhang P. Ensemble method of classifier selection based on confusion matrix[D]. Jiaozuo: Henan Polytechnic University, 2016.
|
[1] | Huang Chengwei, Qi Lei, Duojiecairen, Zhang Huaiqing, Xue Lianfeng, Yun Ting. Prediction of tree growth parameters based on cascaded recurrent network[J]. Journal of Beijing Forestry University, 2023, 45(8): 94-108. DOI: 10.12171/j.1000-1522.20230027 |
[2] | Li Yanfu, Fan Xijian, Yang Xubing, Xu Xinzhou. Remote sensing image classification framework based on self-attention convolutional neural network[J]. Journal of Beijing Forestry University, 2021, 43(10): 81-88. DOI: 10.12171/j.1000-1522.20210196 |
[3] | Zhang Haiyan, Yuan Mingshuai, Jiang Qi, Sun Yu, Cui Jian, Ren Lili, Luo Youqing. Deep learning model compression for real-time listening of boring vibration[J]. Journal of Beijing Forestry University, 2021, 43(6): 92-100. DOI: 10.12171/j.1000-1522.20200100 |
[4] | Jiang Tao, Wang Xinjie. Convolutional neural network for GF-2 image stand type classification[J]. Journal of Beijing Forestry University, 2019, 41(9): 20-29. DOI: 10.13332/j.1000-1522.20180342 |
[5] | Liu Jiazheng, Wang Xuefeng, Wang Tian. Research on image recognition of five bark texture images based on deep learning[J]. Journal of Beijing Forestry University, 2019, 41(4): 146-154. DOI: 10.13332/j.1000-1522.20180242 |
[6] | Yu Huiling, Ma Junwei, Zhang Yizhuo. Plant leaf recognition model based on two-way convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(12): 132-137. DOI: 10.13332/j.1000-1522.20180182 |
[7] | Hu Jing, Chen Zhibo, Yang Meng, Zhang Rongguo, Cui Yaji. Plant leaf segmentation method based on fully convolutional neural network[J]. Journal of Beijing Forestry University, 2018, 40(11): 131-136. DOI: 10.13332/j.1000-1522.20180007 |
[8] | ZHANG Shuai, HUAI Yong-jian.. Leaf image recognition based on layered convolutions neural network deep learning.[J]. Journal of Beijing Forestry University, 2016, 38(9): 108-115. DOI: 10.13332/j.1000-1522.20160035 |
[9] | LIU Nian, KAN Jiang-ming. Plant leaf identification based on the multi-feature fusion and deep belief networks method[J]. Journal of Beijing Forestry University, 2016, 38(3): 110-119. DOI: 10.13332/j.1000-1522.20150267 |
[10] | HUANG Jia-rong, GAO Guang-qin, MENG Xian-yu, GUAN Yu-xiu. Forecasting stand diameter distribution based on artificial neural network.[J]. Journal of Beijing Forestry University, 2010, 32(3): 21-26. |
1. |
赵志强,杜晓宇,刘星,曹鹏熙. 青藏高原高寒地区移植草皮的植物多样性特征. 公路. 2023(05): 360-364 .
![]() | |
2. |
王健铭,曲梦君,王寅,冯益明,吴波,卢琦,何念鹏,李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素. 生物多样性. 2022(06): 62-75 .
![]() | |
3. |
喻阳华,钟欣平,郑维,陈志霞,王俊贤. 喀斯特森林不同演替阶段植物群落物种多样性、功能性状、化学计量及其关联. 生态学报. 2021(06): 2408-2417 .
![]() | |
4. |
冯亚亚,汪季,党晓宏,魏亚娟,管雪薇,李镯. 土壤水盐因子对盐湖防护林体系植被群落分布的影响. 水土保持通报. 2021(02): 43-50 .
![]() | |
5. |
丁杰,张和钰,李志鹏,张谱,冯益明. 天山南麓中段戈壁区裸果木种群空间异质性特征. 草地学报. 2021(09): 2067-2073 .
![]() | |
6. |
欧文慧,汪爱玲,王建凯,许松,郦希墨,张晓伟,韩建萍,张卫华,李静,史梅容. 湖北远安县湿地植物多样性及群落数量特征研究. 湖北林业科技. 2021(05): 48-55 .
![]() | |
7. |
张和钰,管文轲,李志鹏,张谱,丁杰,冯益明. 基于无人机影像的戈壁区植被空间分布特征及其主要影响因素研究. 干旱区资源与环境. 2020(02): 161-167 .
![]() | |
8. |
陈晨,王寅,王健铭,杨欢,王雨辰,徐超,李景文,褚建民. 科尔沁沙地植物群落物种多样性及其主要影响因素. 北京林业大学学报. 2020(05): 106-114 .
![]() | |
9. |
黄庆阳,曹宏杰,谢立红,罗春雨,杨帆,王立民,倪红伟. 五大连池火山熔岩台地草本层物种多样性及环境解释. 生物多样性. 2020(06): 658-667 .
![]() | |
10. |
杨欢,王寅,王健铭,夏延国,李景文,贾晓红,吴波. 库姆塔格沙漠南缘植物物种丰富度格局及主要影响因素. 植物科学学报. 2020(04): 483-492 .
![]() | |
11. |
丁杰,张谱,张和钰,李志鹏,冯益明. 天山南麓中段戈壁区膜果麻黄种群空间分异特征. 应用生态学报. 2020(12): 3997-4003 .
![]() | |
12. |
尹德洁,荆瑞,关海燕,屈琦琦,张丽丽,王若鹏,董丽. 天津滨海新区湿地耐盐植物分布与土壤化学因子的相关关系. 北京林业大学学报. 2018(08): 103-115 .
![]() |