• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Jiazheng, Wang Xuefeng, Wang Tian. Research on image recognition of five bark texture images based on deep learning[J]. Journal of Beijing Forestry University, 2019, 41(4): 146-154. DOI: 10.13332/j.1000-1522.20180242
Citation: Liu Jiazheng, Wang Xuefeng, Wang Tian. Research on image recognition of five bark texture images based on deep learning[J]. Journal of Beijing Forestry University, 2019, 41(4): 146-154. DOI: 10.13332/j.1000-1522.20180242

Research on image recognition of five bark texture images based on deep learning

More Information
  • Received Date: July 24, 2018
  • Revised Date: March 05, 2019
  • Available Online: April 01, 2019
  • Published Date: March 31, 2019
  • ObjectiveAiming at the problem that the existing algorithm and recognition process are too complicated in bark image recognition, a method based on deep learning was proposed to identify the bark images of different tree species.
    MethodTaking the bark texture image of five common tree species as an example, the deep learning method based on convolutional neural network was used to input the original image directly as input, and the low-level and high-level features of the image were performed by convolution and pooling layer. Automatic extraction solved the difficulty and problem of manually extracting texture features. On this basis, the CNN model structure was improved, and the ELU excitation function with Maxout was used instead of the ReLU function to solve the model offset and zero gradient problem. The loss function was improved, the specification parameters were added to optimize the structural parameters, and the learning rate was dynamically adjusted using the piecewise constant attenuation method. Finally, the softmax classifier was used to output the image categories.
    ResultA total of 10 000 images of 5 types of bark texture images were tested, and 200 images of each type were selected as test sets. The final training accuracy rate reached 93.80%, and the test set recognition accuracy rate was 97.70%. In addition, in order to verify the feasibility of the proposed method, and the traditional artificial feature extraction method, the HOG feature, the Gabor feature and the gray level co-occurrence matrix statistical method were extracted, and the SVM classifier was trained. Through experimental comparison, the method identification accuracy was the highest.
    ConclusionThe tree-skin image recognition method based on deep learning proposed in this paper is feasible, which improves the recognition efficiency and precision, and provides a new reference for the intelligent identification of tree species.
  • [1]
    Wooten J R, To S D F, Igathinathane C, et al. Discrimination of bark from wood chips through texture analysis by image processing[J]. Computers and Electronics in Agriculture, 2011, 79(1): 13−19. doi: 10.1016/j.compag.2011.08.005
    [2]
    Bertrand S, Ameur R B, Cerutti G, et al. Bark and leaf fusion systems to improve automatic tree species recognition[J]. Ecological Informatics, 2018, 46: 57−73. doi: 10.1016/j.ecoinf.2018.05.007
    [3]
    Kamal K, Qayyum R, Mathavan S, et al. Wood defects classification using laws texture energy measures and supervised learning approach[J]. Advanced Engineering Informatics, 2017, 34: 125−135. doi: 10.1016/j.aei.2017.09.007
    [4]
    多化豫, 高峰, 李福胜, 等. 基于图像处理的木片与树皮的新识别参数研究[J]. 西北林学院学报, 2015, 30(1):207−210. doi: 10.3969/j.issn.1001-7461.2015.01.34

    Duo H Y, Gao F, Li F S, et al. Approaching to the new identification parameter on wood and bark based on image processing[J]. Journal of Northwest Forestry University, 2015, 30(1): 207−210. doi: 10.3969/j.issn.1001-7461.2015.01.34
    [5]
    赵作林. 基于图像分析的北京地区杨树种类识别研究[D]. 北京: 北京林业大学, 2015.

    Zhao Z L. Research on identification of poplar species in Beijing area based on image analysis[D]. Beijing: Beijing Forestry University, 2015.
    [6]
    孙伶君, 汪杭军, 祁亨年. 基于分块LBP的树种识别研究[J]. 北京林业大学学报, 2011, 33(4):107−112.

    Sun L J, Wang H J, Qi H N. Wood recognition based on block local binary pattern (LBP)[J]. Journal of Beijing Forestry University, 2011, 33(4): 107−112.
    [7]
    李可心, 戚大伟, 牟洪波, 等. 基于灰度共生矩阵与SOM神经网络的树皮纹理特征识别[J]. 森林工程, 2017, 33(3):24−27. doi: 10.3969/j.issn.1006-8023.2017.03.006

    Li K X, Qi D W, Mou H B, et al. Identification of tree bark texture characteristic based on gray co-occurrence matrix and SOM Neural Network[J]. Forest Engineering, 2017, 33(3): 24−27. doi: 10.3969/j.issn.1006-8023.2017.03.006
    [8]
    Zeiler M D, Fergus R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich: Springer, 2014: 818−833.
    [9]
    Szegedy C, Liu W, Jia Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1−9.
    [10]
    Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the cat ’s visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106−154. doi: 10.1113/jphysiol.1962.sp006837
    [11]
    Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278−2324. doi: 10.1109/5.726791
    [12]
    周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229−1251.

    Zhou F Y, Jin L P, Dong J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229−1251.
    [13]
    Boureau Y L, Bach F, Lecun Y, et al. Learning mid-level features for recognition[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010.
    [14]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv, 2015[2018−05−03]. https://arxiv.org/pdf/1409.1556.pdf.
    [15]
    Yoo H J. Deep convolution neural networks in computer vision[J]. IEIE Transactions on Smart Processing & Computing, 2015, 4(1): 35−43.
    [16]
    蒋宗礼. 人工神经网络导论[M]. 北京: 高等教育出版社, 2001.

    Jiang Z L.Introduction to artificial neural networks[M]. Beijing: Higher Education Press, 2001.
    [17]
    Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C/OL]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics[2018−03−12]. https://www.researchgate.net/publication/215616967_Deep_Sparse_Rectifier_Neural_Networks.
    [18]
    Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//International Conference on Computer Vision & Pattern Recognition (CVPR ’05). San Diego: IEEE Computer Society, 2005: 886−893.
    [19]
    Lee T S. Image representation using 2D Gabor wavelets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 959−971. doi: 10.1109/34.541406
    [20]
    Haralick R M, Shanmugam K. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610−621.
    [21]
    Hearst M A, Dumais S T, Osuna E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18−28. doi: 10.1109/5254.708428
    [22]
    Bahrampour S, Ramakrishnan N, Schott L, et al. Comparative study of deep learning software frameworks[J/OL]. arXiv, 2016 [2018−03−05]. https://arxiv.org/pdf/1511.06435.pdf.
  • Related Articles

    [1]Zhan Ting, Ren Jinyuan, Peng Yao, Cao Jinzhen. Influence of bamboo fiber particle size and addition ratio on the properties of bamboo fiber/polypropylene/CaCO3 composite[J]. Journal of Beijing Forestry University, 2024, 46(1): 131-140. DOI: 10.12171/j.1000-1522.20230262
    [2]Hao Qian, Wang Yida, Ge Ying, Zhou Jing, Liu Zhenbo. Acoustic vibration performance of birch veneer-metal copper mesh composites[J]. Journal of Beijing Forestry University, 2023, 45(1): 148-158. DOI: 10.12171/j.1000-1522.20220378
    [3]Lin Bin, Zhai Xueyong, Li Rui, Sun Lipeng, Zhang Yuanting, Yin Yuxue, Liu Zhenbo. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(4): 127-135. DOI: 10.13332/j.1000-1522.20190049
    [4]WANG Dan-dan, CAO Yang, WANG Cui-cui, WEI Wen-bang, ZHANG Shuang-bao. Effect of silane coupling agent on mechanical properties of eucalyptus veneer/polyvinyl chloride (PVC) composites[J]. Journal of Beijing Forestry University, 2016, 38(2): 120-123. DOI: 10.13332/j.1000-1522.20150258
    [5]ZHAO Jun-shi, XU Zheng-dong, WANG Jin-lin, ZHANG Shuang-bao. Influence of fiber-glass on mechanical properties of composite laminates.[J]. Journal of Beijing Forestry University, 2014, 36(2): 129-132.
    [6]SUN Feng, ZHOU Yong-dong, LI Xiao-ling, LvJian-xiong, HAN Chen-jing, ZHAN Man-jun. Effects of species, diameter and processing equipment on veneer recovery of Eucalyptus spp.[J]. Journal of Beijing Forestry University, 2013, 35(4): 128-133.
    [7]ZHANG Ying, YU Zhi-ming, WANG Nan.. Quantitative evaluation of veneer gelatinize process and its effect[J]. Journal of Beijing Forestry University, 2010, 32(4): 251-255.
    [8]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [9]ZHANG De-rong, YU Zhi-ming, LI Jian-zhang, JIN Xiao-juan. Technical parameters of Laminated Veneer Lumber manufactured with dyeing and fire-retardant treated veneers[J]. Journal of Beijing Forestry University, 2005, 27(3): 83-86.
    [10]WANG Zheng, ZHAO Xing-zhi, GUO Wen-jing. Process factors and performances of recycled plastic-wood fiber composites.[J]. Journal of Beijing Forestry University, 2005, 27(1): 1-5.
  • Cited by

    Periodical cited type(15)

    1. 李潇潇. 古建筑木构件损伤及耐久性研究综述. 低温建筑技术. 2025(01): 16-19 .
    2. 麻胜兰,陈志宁,邵顺安,姜绍飞,许跃飞. 基于声发射多参数耦合的木材裂缝检测方法. 建筑结构. 2024(02): 136-144 .
    3. 赵东,马荣宇,于立川,赵健,刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别. 北京林业大学学报. 2024(03): 123-131 . 本站查看
    4. 刘佳,于孟言,高珊,陈昱龙,冯蔓萱,杜鑫宇. 基于AE-BP模型的杨木胶合板应力损伤识别. 中南林业科技大学学报. 2024(04): 169-179 .
    5. 张萌,王灵芝,李守宇,张庆文,杨宇彤. 不同变量圆竹建筑填充组合节点轴压损伤声发射特性研究. 林产工业. 2024(07): 17-22 .
    6. 刘陈陈,黄奥,李昇昊,陈昕煜,顾华志. 基于机器视/听觉的耐火材料蚀损行为表征评价研究进展. 钢铁研究学报. 2024(10): 1247-1266 .
    7. 何佳明,李猛,蔡高洁,胡彬,佘艳华. 不同含水率雪松木的裂纹演化规律试验研究. 科学技术与工程. 2023(05): 1888-1894 .
    8. 李猛,佘艳华,何学杰,王俊辉,何佳明. 基于PZT和DIC对木构件榫卯松动监测试验研究. 林产工业. 2023(06): 20-26 .
    9. 李猛,佘艳华,贺才豪,何佳明,陈迪. 不同温度下的柏木构件顺纹压缩损伤规律研究. 西南林业大学学报(自然科学). 2023(05): 153-163 .
    10. 赖菲,王明华,肖洒,丁锐,罗蕊寒,邓婷婷,李明. 应用声发射技术和图像分形理论对樟子松木材裂纹演化特征的检测. 东北林业大学学报. 2022(07): 89-93 .
    11. 邢雪峰,李善明,金菊婉,林兰英,周永东,傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征. 北京林业大学学报. 2022(08): 107-116 . 本站查看
    12. 邢雪峰,李善明,周永东,林兰英,傅峰. 声发射技术在木质材料损伤监测中的应用研究进展. 世界林业研究. 2022(06): 63-68 .
    13. 杨丽华. 基于数字林业技术加强林业管理的研究. 造纸装备及材料. 2022(11): 96-98 .
    14. 陈泽华,杨小军,张璐,董浩然,赵琦. 防腐处理胶合木的层间界面断裂韧性研究. 森林与环境学报. 2021(02): 219-224 .
    15. 杜永刚,周伟,刘朔,刘亚萍,刘佳,马连华. 含夹渣缺陷Q245R钢的声发射特性和DIC研究. 电子测量技术. 2021(18): 1-6 .

    Other cited types(9)

Catalog

    Article views (4725) PDF downloads (191) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return