• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
Citation: Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201

Research on the growth rate model of Populus spp. considering environmental factors

More Information
  • Received Date: May 24, 2021
  • Revised Date: September 26, 2022
  • Accepted Date: September 26, 2022
  • Available Online: September 29, 2022
  • Published Date: November 24, 2022
  •   Objective  Forest is known as the “lung of the earth”, which is the material and spiritual basis for promoting ecosystem circulation and human survival. Populus spp. is the broadleaved tree species with the largest cultivated quantity in China. Its characteristics of fast growth, easy reproduction, strong adaptability, and short rotation period are important for keeping the balance of wood supply and demand, promoting carbon sequestration, and realizing carbon cycle. Exploring the environmental impact mechanism on its growth is of great significance to realize the efficient management of forest resources and promote the construction of ecological civilization.
      Method  In this study, a multiple regression model of Populus spp. DBH growth rate without considering or having considered environmental factors was established based on the continuous inventory data of Populus spp. in forest resources in China. Random forest (RF), gradient boosting machine algorithm (GBM) and support vector machine (SVM) were established. The optimal parameters of these algorithms were determined by the minimum RMSE. These models were evaluated by the mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination (R2). The level of importance of meteorological climate, terrain, stand structure and other environmental factors on the growth of Populus spp. was explored.
      Result  The DBH growth rate of Populus spp. was mainly affected by its own DBH, decreasing with the increase of DBH, and showing an obvious inverse “J” shaped trend. The model considering environmental factors had higher accuracy than that without considering. Especially, for the growth rate model of Populus spp., the R2 was increased from 0.066 to 0.403. The prediction effect of the machine learning algorithm was obviously better than the regression model algorithm. Among them, the accuracy of RF algorithm was the highest, with R2 reaching 0.730. The prediction result was basically the same as the actual value. The multivariate regression model, RF and GBM were basically consistent in explaining the importance of the model, while SVM had slight differences.
      Conclusion  Although the accuracy of the regression model is slightly lower than that of the machine learning algorithm, it is a white box, which can provide a basis for determining whether the DBH is abnormal in the future inventory work. The growth of Populus spp. is affected by the growth environment and closely related to the geographical location. The low altitude areas with suitable temperature and abundant precipitation and the north slope areas with gentle slope and low slope position will be more suitable for its growth. The higher the density is, the less the conducive to its growth is. In the process of Populus spp. planting, the factors of afforestation location, weather and climate should be considered first. Secondly, the rationality of stand structure, especially stand density should be considered. Finally, we should consider whether the topographic structure is suitable for afforestation projects.
  • [1]
    马克西, 曾伟生, 侯晓巍. 青海省林木胸径生长量与生长率模型研究[J]. 林业资源管理, 2018(4): 22−27.

    Ma K X, Zeng W S, Hou X W. Research on individual tree diameter growth and growth rate models in Qinghai[J]. Forest Resources Management, 2018(4): 22−27.
    [2]
    Qiu Z X, Feng Z K, Song Y N, et al. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: predicting forest vegetation growth based on climate and the environment[J]. Journal of Cleaner Production, 2020, 252: 119715. doi: 10.1016/j.jclepro.2019.119715
    [3]
    马武, 雷相东, 徐光, 等. 蒙古栎天然林单木生长模型研究: Ⅰ. 直径生长量模型[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2): 99−105.

    Ma W, Lei X D, Xu G, et al. Growth models for natural Quercus mongolica forests (Ⅰ): diameter growth model[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(2): 99−105.
    [4]
    谢国来, 陈振雄, 贾嘉. 海南省马占相思生长率模型研建[J]. 中南林业调查规划, 2018, 37(3): 38−41.

    Xie G L, Chen Z X, Jia J. Establishment of growth rate model for Acacia mangium in Hainan[J]. Central South Forest Inventory and Planning, 2018, 37(3): 38−41.
    [5]
    季碧勇, 陶吉兴, 张国江, 等. 林分生长率非线性混合模型的构建[J]. 西南林业大学学报, 2017, 37(1): 149−158.

    Ji B Y, Tao J X, Zhang G J, et al. Construction of nonlinear mixed model of stand growth rate[J]. Journal of Southwest Forestry University, 2017, 37(1): 149−158.
    [6]
    高若楠, 谢阳生, 雷相东, 等. 基于随机森林模型的天然林立地生产力预测研究[J]. 中南林业科技大学学报, 2019, 39(4): 39−46.

    Gao R N, Xie Y S, Lei X D, et al. Study on prediction of natural forest productivity based on random forest model[J]. Journal of Central South University of Forestry & Technology, 2019, 39(4): 39−46.
    [7]
    车少辉. 基于神经网络方法的杉木人工林林分生长模拟研究[D]. 北京: 中国林业科学研究院, 2012.

    Che S H. Growth modeling for Chinese fir plantation based on Artificial Neural Network [D]. Beijing: Chinese Academy of Forestry, 2012.
    [8]
    欧强新. 基于机器学习的吉林天然针阔混交林生长建模[D]. 北京: 中国林业科学研究院, 2019.

    Ou Q X. Modeling stand growth of natural conifer and broadleaf mixed forests in Jilin Province based on machine learning[D]. Beijing: Chinese Academy of Forestry, 2019.
    [9]
    马文苑, 冯仲科, 成竺欣, 等. 山西省林火驱动因子及分布格局研究[J]. 中南林业科技大学学报, 2020, 40(9): 57−69.

    Ma W Y, Feng Z K, Cheng Z X, et al. Study on driving factors and distribution pattern of forest fires in Shanxi Province[J]. Journal of Central South University of Forestry & Technology, 2020, 40(9): 57−69.
    [10]
    谷宇峰, 张道勇, 鲍志东, 等. 利用梯度提升决策树(GBDT)预测渗透率: 以姬塬油田西部长4 + 5段致密砂岩储层为例[J]. 地球物理学进展, 2021, 36(2): 585−594. doi: 10.6038/pg2021EE0216

    Gu Y F, Zhang D Y, Bao Z D, et al. Permeability prediction using gradient boosting decision tree (GBDT): a case study of tight sandstone reservoirs of member of Chang 4 + 5 in western Jiyuan Oilfield[J]. Progress in Geophysics, 2021, 36(2): 585−594. doi: 10.6038/pg2021EE0216
    [11]
    林浩, 李雷孝, 王慧. 支持向量机在智能交通系统中的研究应用综述[J]. 计算机科学与探索, 2020, 14(6): 901−917. doi: 10.3778/j.issn.1673-9418.2001029

    Lin H, Li L X, Wang H. Survey on research and application of support vector machines in intelligent transportation system[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 901−917. doi: 10.3778/j.issn.1673-9418.2001029
    [12]
    董世林, 王战. 中国杨树地理分布规律的研究[J]. 生态学杂志, 1988, 7(6): 12−18.

    Dong S L, Wang Z. Geographieal distribution pattern of Populus in China[J]. Journal of Ecology, 1988, 7(6): 12−18.
    [13]
    国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2019.

    National Forestry and Grassland Administration. China forest resources reported (2014−2018)[M]. Beijing: China Forestry Publishing House, 2019.
    [14]
    曾伟生, 陈新云, 杨学云. 我国人工杨树生物量建模和生产力分析[J]. 林业科学, 2019, 55(11): 1−8. doi: 10.11707/j.1001-7488.20191101

    Zeng W S, Chen X Y, Yang X Y. Biomass modeling and productivity analysis of planted Populus spp. in China[J]. Scientia Silvae Sinicae, 2019, 55(11): 1−8. doi: 10.11707/j.1001-7488.20191101
    [15]
    王玉涛, 刘平, 魏忠平. 油松人工林单木胸径生长量与竞争因子的关系[J]. 沈阳农业大学学报, 2016, 47(3): 299−306. doi: 10.3969/j.issn.1000-1700.2016.03.007

    Wang Y T, Liu P, Wei Z P. The relationship between DBH growth and competition factors for Pinus tabulaeformis plantation[J]. Journal of Shenyang Agricultural University, 2016, 47(3): 299−306. doi: 10.3969/j.issn.1000-1700.2016.03.007
    [16]
    吕延杰, 杨华, 张青, 等. 云冷杉天然林林分空间结构对胸径生长量的影响[J]. 北京林业大学学报, 2017, 39(9): 41−47.

    Lü Y J, Yang H, Zhang Q, et al. Effects of spatial structure on DBH increment of natural spruce-fir forest[J]. Journal of Beijing Forestry University, 2017, 39(9): 41−47.
    [17]
    魏安超, 张大为. 云南松单木材积生长率模型研究[J]. 林业资源管理, 2020(6): 40−46.

    Wei A C, Zhang D W. Study on the volume growth rate model of Pinus yunnanensis of individual tree[J]. Forest Resources Management, 2020(6): 40−46.
    [18]
    周生祥. 树木生长率计算方法比较[J]. 浙江林业科技, 1986(1): 46−47.

    Zhou S X. Comparison of calculation methods for tree growth rate[J]. Journal of Zhejiang Forestry Science and Technology, 1986(1): 46−47.
    [19]
    张茂震. 森林资源监测中未测生长量估计方法分析[J]. 林业资源管理, 2002(1): 28−34. doi: 10.3969/j.issn.1002-6622.2002.01.012

    Zhang M Z. Analysis of unmeasured growth estimation methods in forest resources monitoring[J]. Forest Resources Management, 2002(1): 28−34. doi: 10.3969/j.issn.1002-6622.2002.01.012
    [20]
    Jiang X Y, Huang J G, Cheng J, et al. Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests[J]. Science of the Total Environment, 2018, 631–632: 1070−1078.
    [21]
    Adame P, Hynynen J, Ellas I C, et al. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices[J]. Forest Ecology & Management, 2008, 255(3−4): 1011−1022.
    [22]
    Zhang L J, Peng C H, Dang Q L. Individual-tree basal area growth models for jack pine and black spruce in northern Ontario[J/OL]. Forestry Chronicle, 2004, 80(366) [2021−05−19]. https://doi.org/10.5558/tfc80366-3.
    [23]
    Laubhann D, Sterba H, Reinds G J, et al. The impact of atmospheric deposition and climate on forest growth in European monitoring plots: an individual tree growth model[J]. Forest Ecology & Management, 2009, 258(8): 1751−1761.
    [24]
    Hunter P. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity[J]. Journal of Clinical Microbiology, 1988, 26(11): 2465−2466.
    [25]
    Zhang H Y, Feng Z K, Chen P P, et al. Development of a tree growth difference equation and its application in forecasting the biomass carbon stocks of Chinese forests in 2050[J]. Forests, 2019, 10(7): 582. doi: 10.3390/f10070582
    [26]
    Scolforo H F, Scolforo J, Thiersch C R, et al. A new model of tropical tree diameter growth rate and its application to identify fast-growing native tree species[J]. Forest Ecology and Management, 2017, 400: 578−586. doi: 10.1016/j.foreco.2017.06.048
    [27]
    庞传军, 余建明, 张波, 等. 基于偏依赖量的风功率影响因素相关性分析方法[J]. 电网技术, 2021, 45(2): 552−558. doi: 10.13335/j.1000-3673.pst.2020.0212

    Pang C J, Yu J M, Zhang B, et al. Correlation analysis of factors affecting wind power based on partial dependence[J]. Power System Technology, 2021, 45(2): 552−558. doi: 10.13335/j.1000-3673.pst.2020.0212
    [28]
    Webster C R, Lorimer C G. Minimum opening sizes for canopy recruitment of midtolerant tree species: a retrospective approach[J]. Ecological Applications, 2005, 15(4): 1245−1262. doi: 10.1890/04-0763
    [29]
    曾伟生, 曹迎春, 陈新云, 等. 河北省主要树种单木和林分生长率模型研建[J]. 林业资源管理, 2020(1): 30−37.

    Zeng W S, Cao Y C, Chen X Y, et al. Developing tree-level and stand-level growth rate models for major tree species in Hebei Province[J]. Forest Resources Management, 2020(1): 30−37.
    [30]
    国家林业和草原局. 森林资源连续清查技术规程: GB/T 38590—2020[S].北京: 中国标准出版社, 2020.

    State Forestry and Grassland Administration. Technical regulations for continuous inventory of forest resources: GB/T 38590−2020[S]. Beijing: Standards Press of China, 2020.
    [31]
    Adams H R, Barnard H R, Loomis A K, et al. Topography alters tree growth-climate relationships in a semi-arid forested catchment[J]. Ecosphere (Washington, D.C.), 2014, 5(11): 116−148.
    [32]
    Yang Y H, Watanabe M, Li F D, et al. Factors affecting forest growth and possible effects of climate change in the Taihang Mountains, northern China[J]. Forestry: An International Journal of Forest Research, 2006, 79(1): 135−147. doi: 10.1093/forestry/cpi062
    [33]
    熊光康, 厉月桥, 熊有强, 等. 低密度造林对杉木生长、形质和材种结构的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 165−173.

    Xiong G K, Li Y Q, Xiong Y Q, et al. Effect of low stand density afforestation on the growth, stem-form and timber assortment structure if Cunninghamia lanceolata plantation[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(3): 165−173.
    [34]
    刘忠玲, 吕跃东, 姚颖. 不同林分密度原始红松林枯落物和土壤的持水特性[J]. 森林工程, 2020, 36(5): 8−15. doi: 10.3969/j.issn.1006-8023.2020.05.002

    Liu Z L, Lü Y D, Yao Y. Water-holding characteristics of litterand soil of original Korean pine forests stands with different densities[J]. Forest Engeering, 2020, 36(5): 8−15. doi: 10.3969/j.issn.1006-8023.2020.05.002
    [35]
    胡静杉, 铁牛. 兴安落叶松与白桦混交林合理经营密度研究[J]. 西北林学院学报, 2021, 36(2): 180−185. doi: 10.3969/j.issn.1001-7461.2021.02.26

    Hu J S, Tie N. Rational operating density of mixed forest of Larix gemlinii and Betula platyphlla[J]. Journal of Northwest Forestry University, 2021, 36(2): 180−185. doi: 10.3969/j.issn.1001-7461.2021.02.26
    [36]
    Fox J C, Bi H, Ades P K. Spatial dependence and individual-tree growth models[J]. Forest Ecology & Management, 2007, 245(1): 10−19.
    [37]
    Fox J C, Ades P K, Bi H. Stochastic structure and individual-tree growth models[J]. Forest Ecology & Management, 2001, 154(1−2): 261−276.
    [38]
    王春玲, 蒋麒, 王冬梅, 等. 基于竞争指数的水陆交错带枫杨生长模型[J]. 农业机械学报, 2016, 47(9): 301−308. doi: 10.6041/j.issn.1000-1298.2016.09.041

    Wang C L, Jiang Q, Wang D M, et al. Pterocarya stenoptera growth model in aquatic-terrestrial ecotones based on competitiveness index[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 301−308. doi: 10.6041/j.issn.1000-1298.2016.09.041
    [39]
    Scholten T, Goebes P, Kühn P, et al. On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems: a study from SE China[J]. Journal of Plant Ecology, 2017, 10(1): 111−127. doi: 10.1093/jpe/rtw065
    [40]
    Liu J J, Tan Y H, Slik J W F. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest[J]. Forest Ecology and Management, 2014, 330: 75−81. doi: 10.1016/j.foreco.2014.06.045
  • Related Articles

    [1]Guo Jialun, Zhong Haomin, Zhao Junbo, Chen Yao. Deresination rate prediction of Masson pine wood based on support vector regression (SVR)[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240359
    [2]Wei Xueda, Wang Yu, Ding Mengdong, Wu Shuang, Liang Dan, Ye Meixia, Wu Rongling. Using allometric model and game theory to analyze the genetic regulation mechanism of dynamic growth of Populus tibetica trunk[J]. Journal of Beijing Forestry University, 2024, 46(6): 154-164. DOI: 10.12171/j.1000-1522.20220414
    [3]Wang Biao, Chen Lixin, Wu Yingming, Hu Xu, Fu Zhaoqi, Gao Yajie, Ge Yanling, Tian Qinrui, Lin Feng. Impact of environmental and physiological factors during drought stress on sap flow in Robinia pseudoacacia plantations in the loess region of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2024, 46(4): 127-140. DOI: 10.12171/j.1000-1522.20230209
    [4]Zhao Jing, Chen Ran, Hao Huichao, Shao Zhuang. Application progress and prospect of machine learning technology in landscape architecture[J]. Journal of Beijing Forestry University, 2021, 43(11): 137-156. DOI: 10.12171/j.1000-1522.20200313
    [5]Lei Xiangdong. Applications of machine learning algorithms in forest growth and yield prediction[J]. Journal of Beijing Forestry University, 2019, 41(12): 23-36. DOI: 10.12171/j.1000-1522.20190356
    [6]Luo Hengchun, Zhang Chao, Wei Anchao, Lu Shuangfei. Stand average height growth model and environmental interpretation in model parameter of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2018, 40(4): 67-75. DOI: 10.13332/j.1000-1522.20170347
    [7]HU Jia-hang, JI Xiao-di Xiao-di, LI Feng-long, GUO Ming-hui. Assessment of embodied environmental impact on log wooden wall member.[J]. Journal of Beijing Forestry University, 2017, 39(6): 116-122. DOI: 10.13332/j.1000-1522.20160307
    [8]ZHANG Wen-yi, JING Tian-zhong, YAN Shan-chun. Studies on prediction models of Dendrolimus superans occurrence area based on machine learning[J]. Journal of Beijing Forestry University, 2017, 39(1): 85-93. DOI: 10.13332/j.1000-1522.20160205
    [9]YU Li, LEI Xiang-dong, WANG Ya-zhi, YANG Ying-jun, WANG Quan-jun. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014, 36(5): 22-32. DOI: 10.13332/j.cnki.jbfu.2014.05.007
    [10]ZENG Wei-sheng.. Compatible model system of volume growth rates of natural spruce forest in Tibet[J]. Journal of Beijing Forestry University, 2008, 30(5): 87-90.
  • Cited by

    Periodical cited type(12)

    1. 赵志强,杜晓宇,刘星,曹鹏熙. 青藏高原高寒地区移植草皮的植物多样性特征. 公路. 2023(05): 360-364 .
    2. 王健铭,曲梦君,王寅,冯益明,吴波,卢琦,何念鹏,李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素. 生物多样性. 2022(06): 62-75 .
    3. 喻阳华,钟欣平,郑维,陈志霞,王俊贤. 喀斯特森林不同演替阶段植物群落物种多样性、功能性状、化学计量及其关联. 生态学报. 2021(06): 2408-2417 .
    4. 冯亚亚,汪季,党晓宏,魏亚娟,管雪薇,李镯. 土壤水盐因子对盐湖防护林体系植被群落分布的影响. 水土保持通报. 2021(02): 43-50 .
    5. 丁杰,张和钰,李志鹏,张谱,冯益明. 天山南麓中段戈壁区裸果木种群空间异质性特征. 草地学报. 2021(09): 2067-2073 .
    6. 欧文慧,汪爱玲,王建凯,许松,郦希墨,张晓伟,韩建萍,张卫华,李静,史梅容. 湖北远安县湿地植物多样性及群落数量特征研究. 湖北林业科技. 2021(05): 48-55 .
    7. 张和钰,管文轲,李志鹏,张谱,丁杰,冯益明. 基于无人机影像的戈壁区植被空间分布特征及其主要影响因素研究. 干旱区资源与环境. 2020(02): 161-167 .
    8. 陈晨,王寅,王健铭,杨欢,王雨辰,徐超,李景文,褚建民. 科尔沁沙地植物群落物种多样性及其主要影响因素. 北京林业大学学报. 2020(05): 106-114 . 本站查看
    9. 黄庆阳,曹宏杰,谢立红,罗春雨,杨帆,王立民,倪红伟. 五大连池火山熔岩台地草本层物种多样性及环境解释. 生物多样性. 2020(06): 658-667 .
    10. 杨欢,王寅,王健铭,夏延国,李景文,贾晓红,吴波. 库姆塔格沙漠南缘植物物种丰富度格局及主要影响因素. 植物科学学报. 2020(04): 483-492 .
    11. 丁杰,张谱,张和钰,李志鹏,冯益明. 天山南麓中段戈壁区膜果麻黄种群空间分异特征. 应用生态学报. 2020(12): 3997-4003 .
    12. 尹德洁,荆瑞,关海燕,屈琦琦,张丽丽,王若鹏,董丽. 天津滨海新区湿地耐盐植物分布与土壤化学因子的相关关系. 北京林业大学学报. 2018(08): 103-115 . 本站查看

    Other cited types(12)

Catalog

    Article views (696) PDF downloads (120) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return