Citation: | Wang Biao, Chen Lixin, Wu Yingming, Hu Xu, Fu Zhaoqi, Gao Yajie, Ge Yanling, Tian Qinrui, Lin Feng. Impact of environmental and physiological factors during drought stress on sap flow in Robinia pseudoacacia plantations in the loess region of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2024, 46(4): 127-140. DOI: 10.12171/j.1000-1522.20230209 |
This study aims to investigate the impact of drought stress on the transpiration process of Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China. Additionally, it aims to explore the environmental and physiological mechanisms that regulate transpiration in R. pseudoacacia under drought stress conditions. The findings of this study aim to establish a theoretical basis for the management and water regulation of R. pseudoacacia plantations in the loess region of western Shanxi Province.
The research focused on R. pseudoacacia plantations in the loess region of western Shanxi Province. Continuous monitoring of sap flow changes in R. pseudoacacia was to conduct alongside a rainfall interception experiment (the 50% precipitation reduction during the entire growing season). Simultaneously, environmental factors and hydraulic physiological changes were monitored to analyze their collective influence on sap flow.
(1) Drought treatment significantly reduced the sap flow rate (Js) of R. pseudoacacia, with an average of 0.92 g/(cm2·h) under drought treatment, markedly lower than the control treatment’s Js of 1.87 g/(cm2·h). However, the trend of variation exhibited similarity. (2) Drought treatment had an impact on the relative water content of R. pseudoacacia branches and leaves. Over time, the relative water content decreased with extended drought treatment periods. In varying treatment conditions, both water potential and hydraulic capacitance of R. pseudoacacia branches and leaves exhibited a “V” shaped pattern. Under drought treatment, the water potential of branches and leaves (−1.22 MPa, −0.72 MPa) was lower compared with the control treatment (−1.15 MPa, −0.60 MPa). Moreover, under drought treatment, there was a decrease in the hydraulic capacitance of branches (0.52 g/(cm3·MPa)) and leaves (1.05 × 10−2 g/(cm2·MPa)). (3) Changes in R. pseudoacacia’s sap flow were influenced by meteorological factors, soil moisture, and hydraulic physiological factors. The primary controlling factors under different treatments were solar radiation. Under drought treatment, the influence of branch and leaf hydraulic capacitance weakened, indicating that R. pseudoacacia under control conditions relied more on tissue hydraulic capacitance to meet transpiration compared with drought treatment.
Drought treatment significantly reduces the sap flow rate of R. pseudoacacia, but the trend of variation exhibites similarity. Changes in R. pseudoacacia’s sap flow are influenced by meteorological factors, the primary controlling factors are meteorological factors, soil moisture, and hydraulic physiological factors. These findings contribute to a deeper understanding of transpiration alterations in plantations under drought conditions. Additionally, they hold significant importance in evaluating the stability of plantation ecosystems and eco-hydrological processes in the loess region amidst climate change.
[1] |
Gerard S, Beth R, Solomon D, et al. Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality[J]. Tree Physiology, 2019, 39(8): 1300−1312. doi: 10.1093/treephys/tpz062
|
[2] |
Brendan C, Timothy B J, Brodersen C R. Triggers of tree mortality under drought[J]. Nature, 2018, 558(6): 531−539.
|
[3] |
王利娜, 朱清科, 翁白莎, 等. 1961—2012年黄土高原干旱时空分布特征[J]. 水利水电技术, 2018, 49(2): 15−22.
Wang L N, Zhu Q K, Weng B S, et al. Temporal and spatial distribution characteristics of drought in Loess Plateau from 1961 to 2012[J]. Water Resources and Hydropower Engineering, 2018, 49(2): 15−22.
|
[4] |
师玉锋, 彭守璋. 2018—2100年黄土高原地区干旱的时空变化[J]. 兰州大学学报:自然科学版, 2020, 56(6): 785−792.
Shi Y F, Peng S Z. Spatiotemporal changes in drought across the Loess Plateau from 2018 to 2100[J]. Journal of Lanzhou University (Natural Sciences), 2020, 56(6): 785−792.
|
[5] |
Giana F E, Martínez-Meier A, Mastrandrea C A, et al. Intensity and number of thinning operations affect the response of Eucalyptus grandis to water availability and extreme drought events[J/OL]. Forest Ecology and Management, 2023, 529(2) [2023−12−20]. https://www.elsevier.com/locate/foreco.
|
[6] |
牛春梅. 黄土高原两个气候区刺槐树干液流及生理生态特性研究[D]. 杨凌: 西北农林科技大学, 2017.
Niu C M. Study on stem flow and physiological and ecological characteristics of Robinia pseudoacacia in two climatic zones of the Loess Plateau[D]. Yangling: Northwest A&F University, 2017.
|
[7] |
张荣, 毕华兴, 焦振寰, 等. 生长季刺槐树干液流昼夜变化特征及其对气象因子的响应[J]. 浙江农林大学学报, 2022, 39(6): 1238−1246.
Zhang R, Bi H X, Jiao Z H, et al. Diurnal and nocturnal changes in stem sap flow of Robinia pseudoacacia during growing season and its response to meteorological factors[J]. Journal of Zhejiang A& F University, 2022, 39(6): 1238−1246.
|
[8] |
王一心, 冯天骄, 肖辉杰, 等. 干旱胁迫和不同株高基径条件下的白刺液流速率特征差异[J]. 水土保持研究, 2023, 30(5): 234−240, 249.
Wang Y X, Feng T J, Xiao H J, et al. Characteristics of sap flow rate of Nitraria tangutorum under drought stress and different plant height and basal diameter[J]. Research of Soil and Water Conservation, 2023, 30(5): 234−240, 249.
|
[9] |
张星宇, 杨金艳, 阮宏华, 等. 模拟干旱下杨树树干液流特征及其对环境因子的响应[J]. 水土保持研究, 2024, 31(2): 84−91.
Zhang X Y, Yang J Y, Ruan H H, et al. Characteristics of poplar Populus deltoides stem sap flow and its response to environmental factors under simulated drought[J]. Research of Soil and Water Conservation, 2024, 31(2): 84−91.
|
[10] |
Guillen L A, Brzostek E, McNeil B, et al. Sap flow velocities of Acer saccharum and Quercus velutina during drought: insights and implications from a throughfall exclusion experiment in West Virginia, USA[J/OL]. Science of the Total Environment, 2022, 850: 158029[2023−12−20]. http://www.sciencedirect.com/science/journal/.
|
[11] |
Geravandi M, Farshadfar E, Kahrizi D. Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotype[J]. Russian Journal of Plant Physiology, 2011, 58(1): 69−75. doi: 10.1134/S1021443711010067
|
[12] |
梁晓华, 施娅云, 张燕. 干旱胁迫对三种蕨类植物生理生化的影响[J]. 楚雄师范学院学报, 2022, 35(6): 55−61.
Liang X H, Shi Y Y, Zhang Y. Effects of drought stress on physiological and biochemical changes of several pteridophytes[J]. Journal of Chuxiong Normal University, 2022, 35(6): 55−61.
|
[13] |
刘欣. 植物水势研究与应用综述[J]. 吉林林业科技, 2015, 44(4): 35−37.
Liu X. Research and application review of plant water potential[J]. Journal of Jilin Forestry Science and Technology, 2015, 44(4): 35−37.
|
[14] |
洪光宇, 王晓江, 刘果厚, 等. 树干液流研究进展[J]. 内蒙古林业科技, 2020, 46(3): 50−55.
Hong G Y, Wang X J, Liu G H, et al. Research progress on stem sap flow[J]. Journal of Inner Mongolia Forestry Science and Technology, 2020, 46(3): 50−55.
|
[15] |
张庆印. 半湿润黄土区坡面刺槐林对干旱胁迫的生理响应[D]. 杨凌: 西北农林科技大学, 2018.
Zhang Q Y. Physiological response of sloped Robinia pseudoacacia forest to drought stress in semi-humid loess area[D]. Yangling: Northwest A&F University, 2018.
|
[16] |
秦洁, 司建华, 贾冰, 等. 巴丹吉林沙漠典型植物水势与导水率的时空变化[J]. 生态学杂志, 2021, 40(6): 1629−1638.
Qin J, Si J H, Jia B, et al. Temporal and spatial variations of water potential and hydraulic conductivity of typical plant species in Badain Jaran Desert[J]. Chinese Journal of Ecology, 2021, 40(6): 1629−1638.
|
[17] |
Qin J, Si J H, Jia B, et al. Water use strategies of Ferula bungeana on mega-dunes in the badain jaran desert[J/OL]. Frontiers in Plant Science, 2022, 13: 957421[2023−12−20]. https://www.frontiersin.org/journals/plant-science.
|
[18] |
Sperry J S,Meinzer F C,Mcculloh K A. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees[J]. Plant, Cell & Environment, 2008, 31(5): 632−645.
|
[19] |
李广德, 王晓辉, 贾黎明, 等. 国槐枝叶水分特征及其对树干边材液流的影响[J]. 中南林业科技大学学报, 2010, 30(1): 23−28. doi: 10.3969/j.issn.1673-923X.2010.01.011
Li G D, Wang X H, Jia L M, et al. Water characteristics of Sophora japonica twig and leaf and its impact on sap flow[J]. Journal of Central South University of Forestry & Technology, 2010, 30(1): 23−28. doi: 10.3969/j.issn.1673-923X.2010.01.011
|
[20] |
罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925−941. doi: 10.17521/cjpe.2021.0111
Luo D D, Wang C K, Jin Y. Response mechanisms of hydraulic systems of woody plants to drought stress[J]. Chinese Journal of Plant Ecology, 2021, 45(9): 925−941. doi: 10.17521/cjpe.2021.0111
|
[21] |
杨启良, 张富仓, 刘小刚, 等. 植物水分传输过程中的调控机制研究进展[J]. 生态学报, 2011, 31(15): 4427−4436.
Yang Q L, Zhang F C, Liu X G, et al. Research progress on regulation mechanism for the process of water transport in plants[J]. Acta Ecologica Sinica, 2011, 31(15): 4427−4436.
|
[22] |
李广德, 付海曼, 贾黎明. 银杏树干边材液流及水容特性研究[J]. 西北林学院学报, 2014, 29(4): 54−58. doi: 10.3969/j.issn.1001-7461.2014.04.09
Li G D, Fu H M, Jia L M. Studies on the characteristics of xylem sap flow and water capacitance of Ginkgo biloba[J]. Journal of Northwest Forestry University, 2014, 29(4): 54−58. doi: 10.3969/j.issn.1001-7461.2014.04.09
|
[23] |
刘娇. 塔克拉玛干沙漠防护林植物对咸水滴灌的响应及灌溉制度优化[D]. 杨凌: 西北农林科技大学, 2022.
Liu J. Response of plants to saline drip irrigation and optimization of irrigation system in Taklimakan Desert shelterbelt[D]. Yangling: Northwest A&F University, 2022.
|
[24] |
乔英, 马英杰, 辛明亮. 基于改进S-W与结构方程模型的干旱区枣园蒸散特征分析[J]. 农业机械学报, 2021, 52(8): 307−317. doi: 10.6041/j.issn.1000-1298.2021.08.032
Qiao Y, Ma Y J, Xin M L. Analysis of evapotranspiration characteristics of Ziziphus jujuba Mill. orchards in arid areas based on improved S-W and structural equation model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 307−317. doi: 10.6041/j.issn.1000-1298.2021.08.032
|
[25] |
Chen Y, He J, He Y, et al. Seasonal hydrological traits in Salix psammophila and its responses to soil moisture and meteorological factors in desert areas[J/OL]. Ecological Indicators, 2022, 136: 108626[2023−12−20]. https://www.elsevier.com/locate/ecolind.
|
[26] |
赵文芹, 席本野, 刘金强, 等. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370−382. doi: 10.17521/cjpe.2020.0343
Zhao W Q, Xi B Y, Liu J Q, et al. Transpiration process and environmental response of poplar plantation under different irrigation conditions[J]. Chinese Journal of Plant Ecology, 2021, 45(4): 370−382. doi: 10.17521/cjpe.2020.0343
|
[27] |
Chen Z, Zhang Z, Sun G, et al. Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China[J/OL]. Agricultural and Forest Meteorology, 2020, 284: 107904[2023−12−20]. https://www.elsevier.com/locate/agrformet.
|
[28] |
汲玉河, 周广胜, 李宗善. 气候变化驱动下黄土高原刺槐林气候适宜性和脆弱性[J]. 生态学报, 2023, 43(8): 3348−3358.
Ji Y H, Zhou G S, Li Z S. Climate suitability and vulnerability of Robinia pseudoacacia forest driven by climate change on the Loess Plateau[J]. Acta Ecologica Sinica, 2023, 43(8): 3348−3358.
|
[29] |
Renninger H J, Carlo N, Clark K L, et al. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem[J]. Tree Physiology, 2014, 34(2): 159−173. doi: 10.1093/treephys/tpt122
|
[30] |
李浩, 胡顺军, 朱海, 等. 基于热扩散技术的梭梭树干液流特征研究[J]. 生态学报, 2017, 37(21): 7187−7196.
Li H, Hu S J, Zhu H, et al. Characterization of stem sap flow Haloxylon ammodendr on by using thermal dissipation technology[J]. Acta Ecologica Sinica, 2017, 37(21): 7187−7196.
|
[31] |
Xu X, Tong L, Li F, et al. Sap flow of irrigated Populus alba var. pyramidalis and its relationship with environmental factors and leaf area index in an arid region of Northwest China[J]. Journal of Forest Research, 2011, 16(2): 144−152. doi: 10.1007/s10310-010-0220-y
|
[32] |
刘崴, 魏天兴, 朱清科. 半干旱黄土丘陵区河北杨和油松生长季树干液流特征[J]. 浙江农林大学学报, 2018, 35(6): 1045−1053. doi: 10.11833/j.issn.2095-0756.2018.06.007
Liu W, Wei T X, Zhu Q K. Growing season sap flow of Populus hopeiensis and Pinus tabulaeformis in the semi-aridloess plateau, China[J]. J Zhejiang A&F University, 2018, 35(6): 1045−1053. doi: 10.11833/j.issn.2095-0756.2018.06.007
|
[33] |
王翼龙. 黄土高原半干旱区两典型林分主要树种光合耗水特性及影响因素研究[D]. 北京: 中国科学院, 2010.
Wang Y L. Study on photosynthetic water consumption characteristics and influencing factors of the main tree species of two typical forest stands in the semi-arid area of the Loess Plateau[D]. Beijing: Chinese Academy of Sciences, 2010.
|
[34] |
奚如春, 马履一, 樊敏, 等. 油松枝干水容特征及其对蒸腾耗水的影响[J]. 北京林业大学学报, 2007, 29(1): 160−165. doi: 10.3321/j.issn:1000-1522.2007.01.030
Xi R C, Ma L Y, Fan M, et al. Water capacity of branches and stems of Pinus tabulaeformis and its impact on transpiring water consumption[J]. Journal of Beijing Forestry University, 2007, 29(1): 160−165. doi: 10.3321/j.issn:1000-1522.2007.01.030
|
[35] |
何秋月. 黄土高原半湿润区刺槐人工林蒸腾耗水特征对降雨减少的响应[D]. 杨凌: 西北农林科技大学, 2021.
He Q Y. Response of transpiration consumption characteristics of Robinia pseudoacacia plantations in the semi-humid area of the Loess Plateau to rainfall reduction[D]. Yangling: Northwest A&F University, 2021.
|
[36] |
Zhang Q Y, Jia X X, Shao M A, et al. Sap flow of black locust Robinia pseudoacacia in response to short-term drought in southern Loess Plateau of China[J/OL]. Scientific Reports, 2018, 8(1): 6222[2023−02−28]. https://www.nature.com/articles/s41598-018-24669-5.
|
[37] |
Besson C K, Lobo-Do-Vale R, Rodrigues M L, et al. Cork oak physiological responses to manipulated water availability in a Mediterranean woodland[J]. Agricultural and Forest Meteorology, 2014, 184: 230−242. doi: 10.1016/j.agrformet.2013.10.004
|
[38] |
Wightman M G, Martin T A, Gonzalez-Benecke C A, et al. Loblolly pine productivity and water relations in response to throughfall reduction and fertilizer application on a poorly drained site in northern Florida[J]. Forests, 2016, 7(10): 1−19.
|
[39] |
Nadal-Sala D, Hartig F, Gracia C A, et al. Global warming likely to enhance black locust (Robinia pseudoacacia L.) growth in a Mediterranean riparian forest[J/OL]. Forest Ecology and Management, 2019, 449: 117448[2023−01−29]. https://europepmc.org/article/AGR/IND606496357.
|
[40] |
王寒茹, 刘华, 李丕军, 等. 4个核桃类树种苗木应对持续干旱的生理响应[J]. 安徽农业大学学报, 2020, 47(5): 722−729.
Wang H R, Liu H, Li P J, et al. Impact of simulated drought stress on ecophysiological characteristics of four tree species in walnut family[J]. Journal of Anhui Agricultural University, 2020, 47(5): 722−729.
|
[41] |
徐扬, 赵健, 张雷, 等. 干旱胁迫对板栗二年生嫁接苗叶片相对含水量和可溶性糖含量的影响[J]. 农学学报, 2017, 7(1): 91−94. doi: 10.11923/j.issn.2095-4050.cjas16070002
Xu Y, Zhao J, Zhang L, et al. Effect of drought stress on leaf relative water content and soluble sugar content of 2-year-old grafted Castanea mollissima[J]. Journal of Agriculture, 2017, 7(1): 91−94. doi: 10.11923/j.issn.2095-4050.cjas16070002
|
[42] |
金思雨, 彭祚登. 刺槐苗木碳水生理参数对长期干旱及复水的响应变化[J]. 北京林业大学学报, 2023, 45(8): 43−56.
Jin S Y, Peng Z D. Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration[J]. Journal of Beijing Forestry University, 2023, 45(8): 43−56.
|
[43] |
曹永慧, 周本智, 倪霞, 等. 模拟干旱下毛竹叶片水势的动态变化[J]. 林业科学研究, 2018, 31(4): 183−191.
Cao Y H, Zhou B Z, Ni X, et al. The dynamic change of leaf water potential for Moso bamboo under throughfall exclusion[J]. Forest Research, 2018, 31(4): 183−191.
|
[44] |
邵畅畅, 罗仙英, 丁贵杰, 等. 干旱对马尾松茎叶水力特征及解剖特性的影响[J]. 植物生理学报, 2022, 58(5): 937−945.
Shao C C, Luo X Y, Ding G J, et al. Effects of drought on hydraulic and anatomical characteristics of stem and leaf in Pinus massoniana[J]. Plant Physiology Journal, 2022, 58(5): 937−945.
|
[45] |
谢东锋, 王华田, 张光灿, 等. 山杏苗木对干旱胁迫的生理响应[J]. 中国水土保持科学, 2019, 17(4): 122−129.
Xie D F, Wang H T, Zhang G C, et al. Physiological responses of Prunus sibirica seedlings to drought stress[J]. Science of Soil and Water Conservation, 2019, 17(4): 122−129.
|
[46] |
张荣, 毕华兴, 王宁, 等. 不同时间尺度下刺槐蒸腾耗水与环境因子关系[J]. 水土保持学报, 2022, 36(5): 204−211.
Zhang R, Bi H X, Wang N, et al. Relationship between transpiration of Robinia pseudoacacia and environmental factors at different time scales[J]. Journal of Soil and Water Conservation, 2022, 36(5): 204−211.
|
[47] |
费俊娥, 焦陇慧, 吴贤忠, 等. 陇东黄土高原区人工刺槐树干液流特征[J]. 甘肃农业大学学报, 2020, 55(6): 131−139.
Fei J E, Jiao L H, Wu X Z, et al. Study on sap flow characteristics of Robinia pseudoacacia artificially grown in hilly and gully region of Loess Plateau in eastern Gansu[J]. Journal of Gansu Agricultural University, 2020, 55(6): 131−139.
|
[48] |
赵春彦, 司建华, 冯起, 等. 树干液流研究进展与展望[J]. 西北林学院学报, 2015, 30(5): 98−105. doi: 10.3969/j.issn.1001-7461.2015.05.16
Zhao C Y, Si J H, Feng Q, et al. Stem sap flow research: progress and prospect[J]. Journal of Northwest Forestry University, 2015, 30(5): 98−105. doi: 10.3969/j.issn.1001-7461.2015.05.16
|
[49] |
崔鸿侠, 唐万鹏, 潘磊, 等. 神农架华山松树干液流特征及其影响因素[J]. 中南林业科技大学学报, 2018, 38(9): 89−93.
Cui H X, Tang W P, Pan L, et al. Characteristics of sap flow and its influencing factors of Pinus amandii in Shennongjia[J]. Journal of Central South University of Forestry & Technology, 2018, 38(9): 89−93.
|
[50] |
王媛, 魏江生, 刘兵兵, 等. 环境因子对大兴安岭南段白桦树干液流变化特征的影响[J]. 东北林业大学学报, 2021, 49(2): 11−17.
Wang Y, Wei J S, Liu B B, et al. Effect of environmental factors on characteristics of sap flow of Betula platyphylla in southern Daxing’an Mountains[J]. Journal of Northeast Forestry University, 2021, 49(2): 11−17.
|
[51] |
Zavadilova I, Szatniewska J, Petrík P, et al. Sap flow and growth response of Norway spruce under long-term partial rainfall exclusion at low altitude[J/OL]. Frontiers in Plant Science, 2023, 14: 1089706[2023−12−20]. https://www.frontiersin.org/journals/plant-science.
|
[52] |
Harmon R E, Barnard H R, Day-Lewis F D, et al. Exploring environmental factors that drive diel variations in tree water storage using wavelet analysis[J/OL]. Frontiers in Water, 2021, 3: 682285[2023−12−20]. https://www.frontiersin.org/journals/water.
|
[53] |
郭锦荣, 白天军, 邓文平, 等. 不同胸径日本柳杉树干液流及其蒸腾耗水差异[J]. 西南林业大学学报: 自然科学, 2019, 39(2): 70−77.
Guo J R, Bai T J, Deng W P, et al. Differences in sap flow and transpiring water consumption of Cryptomeria japonica with different DBH[J]. Journal of Southwest Forestry University: Natural Sciences, 2019, 39(2): 70−77.
|
[54] |
梅婷婷, 赵平, 倪广艳, 等. 树木胸径大小对树干液流变化格局的偏度和时滞效应[J]. 生态学报, 2012, 32(22): 7018−7026. doi: 10.5846/stxb201110101482
Mei T T, Zhao P, Ni G Y, et al. Effect of stem diameter at breast height on skewness of sap flow pattern and time lag[J]. Acta Ecologica Sinica, 2012, 32(22): 7018−7026. doi: 10.5846/stxb201110101482
|
1. |
曹昊阳,刘宇升,许宇星,竹万宽,黄润霞,王志超. 雷州半岛尾巨桉人工林生理形态特征对季节性干旱的响应. 桉树科技. 2024(03): 1-9 .
![]() |