• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
HU Jia-hang, JI Xiao-di Xiao-di, LI Feng-long, GUO Ming-hui. Assessment of embodied environmental impact on log wooden wall member.[J]. Journal of Beijing Forestry University, 2017, 39(6): 116-122. DOI: 10.13332/j.1000-1522.20160307
Citation: HU Jia-hang, JI Xiao-di Xiao-di, LI Feng-long, GUO Ming-hui. Assessment of embodied environmental impact on log wooden wall member.[J]. Journal of Beijing Forestry University, 2017, 39(6): 116-122. DOI: 10.13332/j.1000-1522.20160307

Assessment of embodied environmental impact on log wooden wall member.

More Information
  • Received Date: September 27, 2016
  • Revised Date: April 03, 2017
  • Published Date: May 31, 2017
  • Life cycle assessment (LCA) based on the cradle-to-gate inventories from factory was used to examine the raw material, energy consumption and environment load of embodied process on the functional unit of 1 m3 wall product. Moreover, CML-2001 method and database provided by GaBi were used to evaluate environment impact of wall product in the life circle scope. The results were as follows: 1) six impact categories had been assessed in detail in the LCA study: global warming potential (GWP), human toxic potential(HTP), acidification(AP), eutrophication (EP), photochemical ozone creation potential (POCP), abiotic depletion (ADP) and the absolute values were 3.50×10-9, 2.11×10-9, 1.38×10-10, 1.38×10-10, 2.33 ×10-11, 1.30×10-12, respectively. GWP and HTP were mainly responsible for the preparation of wall product, accounted for 59.2% and 35.7% of total environmental impacts, respectively. 2) To carry out this analysis, a wood factory was assessed in detail and the process was divided into four stages: the raw material obtaining stage, the glued laminated timber preparation stage, the wood wall preparation stage, the painting and packing stage and the absolute values of each stage were 2.40×10-9, 7.32×10-10, 4.25×10-10, 7.20×10-11, respectively. Raw material obtaining stage was the main stage of environment impacting. 3)Excluding the positive impact of the photosynthesis, HTP was mainly responsible for the environmental deterioration and accounted for 35.7% of total environmental impact. Raw material obtaining, glulam preparation and wall preparation caused the most of HTP. The detailed analysis of each stage identified the most important environmental hot spots of HTP: the wood dust and electricity usage.
  • [1]
    LI X, ZHU Y, ZHANG Z. An LCA-based environmental impact assessment model for construction processes[J]. Building & Environment, 2010, 45(3):766-775. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7e6f46611bf70abb735af03692291ca
    [2]
    ACQUAYE A A, DUFFY A P. Input-output analysis of Irish construction sector greenhouse gas emissions[J]. Building & Environment, 2010, 45(3):784-791 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=806424705ab0204b29f73ae3982143c8
    [3]
    黄东梅, 周培国, 张齐生.竹结构民宅的生命周期评价[J].北京林业大学学报, 2012, 34(5):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201205025

    HUANG D M, ZHOU P G, ZHANG Q S. Life cycle assessment of bamboo-constructed house[J].Journal of Beijing Forestry University, 2012, 34(5):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201205025
    [4]
    燕鹏飞, 杨军.木结构产品物化环境影响的定量评价[J].清华大学学报(自然科学版), 2008, 48(9):1395-1398. doi: 10.3321/j.issn:1000-0054.2008.09.006

    YAN P F, YANG J. Quantitative assessment of the embodied environmental impact of wood products[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(9):1395-1398. doi: 10.3321/j.issn:1000-0054.2008.09.006
    [5]
    LI J, YUAN Y, GUAN X. Assessing the environmental impacts of glued-laminated bamboo based on a life cycle assessment[J]. BioResources, 2016, 11(1): 1941-1950.
    [6]
    GONZÁLEZ-GARCÍA S, LOZANO R G, ESTÉVEZ J C, et al. Environmental assessment and improvement alternatives of a ventilated wooden wall from LCA and DfE perspective[J]. International Journal of Life Cycle Assessment, 2012, 17(4): 432-443. doi: 10.1007/s11367-012-0384-0
    [7]
    环境管理生命周期评价要求与指南: GB/T 24044—2008[S].北京: 中国标准出版社, 2008.

    Environmental management-life circle assessment-requirements and guidelines: GB/T24044—2008[S].Beijing: Standards Press of China, 2008.
    [8]
    李兴福, 徐鹤.基于GaBi软件的钢材生命周期评价[J].环境保护与循环经济, 2009, 29(6):15-18. doi: 10.3969/j.issn.1674-1021.2009.06.009

    LI X F, XU H. Life circle assessment of steel based on GaBi[J]. Environmental Protection & Re-Cycling Economy, 2009, 29(6):15-18. doi: 10.3969/j.issn.1674-1021.2009.06.009
    [9]
    袁媛.基于改性木质素的环保型木质材料研制及其生命周期评价[D].哈尔滨: 东北林业大学, 2014. http: //cdmd.cnki.com.cn/Article/CDMD-10225-1016303866.htm

    YUAN Y.Preparation and life cycle assessment of environment-friendly wooden composites based on modified industrial lignins[D]. Harbin: Northeast Forestry University, 2014. http: //cdmd.cnki.com.cn/Article/CDMD-10225-1016303866.htm
    [10]
    徐小宁.中国水泥工业的生命周期评价[D].大连: 大连理工大学, 2013. http: //cdmd.cnki.com.cn/Article/CDMD-10141-1013197759.htm

    XU X N. Life cycle assessment of cement in China[D]. Dalian: Dalian University of Technology, 2013. http: //cdmd.cnki.com.cn/Article/CDMD-10141-1013197759.htm
    [11]
    ROBERTSON A B, LAM F C F, COLE R J. A Comparative cradle-to-gate life cycle assessment of mid-rise office building construction alternatives: laminated timber or reinforced concrete[J]. Buildings, 2012, 2(4):245-270. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201509008
    [12]
    MAHALLE L, ALENDAR A, MIHAI M, et al. A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites[J]. International Journal of Life Cycle Assessment, 2014, 19(6):1305-1315. doi: 10.1007/s11367-014-0731-4
    [13]
    PUETTMANN M E, BERGMAN R, HUBBARD S, et al. Cradle-to-gate life-cycle inventory of US wood products production: CORRIM Phase I and Phase Ⅱ products[J]. Wood & Fiber Science, 2010, 42(3):15-28. https://www.researchgate.net/publication/263226117_Cradle-to-Gate_Life-Cycle_Inventory_and_Impact_Assessment_of_Wood_Fuel_Pellet_Manufacturing_from_Hardwood_Flooring_Residues_in_the_Southeastern_United_States
    [14]
    LIU J, HU H, XU J, et al. Optimizing enzymatic pretreatment of recycled fiber to improve its draining ability using response surface methodology[J]. BioResources, 2012, 7(2):2121-2140.
    [15]
    丁宁, 杨建新.中国化石能源生命周期清单分析[J].中国环境科学, 2015, 35(5):1592-1600. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201505041

    DING N, YANG J X. Life cycle inventory analysis of fossil energy in China[J].China Environmental Science, 2012, 35(5):1592-1600. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201505041
    [16]
    邓南圣, 王小兵.生命周期评价[M].北京:化学工业出版社, 2003.

    DENG N S, WANG X B. Life circle assessment[M].Beijing: Chemical Industry Press, 2003.
    [17]
    袁宝荣, 聂祚仁, 狄向华, 等.乙烯生产的生命周期评价影响评价与结果解释[J].化工进展, 2006, 25(4):432-435. doi: 10.3321/j.issn:1000-6613.2006.04.018

    YUAN B Y, NIE Z R, DI X H, et al. Life cycle inventories of fossil fuels in China final life cycle inventories[J]. Chemical Industry and Engineering Progress, 2006, 25(4):432-435. doi: 10.3321/j.issn:1000-6613.2006.04.018
    [18]
    徐小宁, 陈郁, 张树深, 等.复合硅酸盐水泥的生命周期评价[J].环境科学学报, 2013, 33(9):2632-2638. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201309038

    XU X N, CHEN Y, ZHANG S S, et al. Life cycle assessment of composite portland cement[J].Acta Scientiae Circumstantiae, 2013, 33(9):2632-2638. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201309038
  • Related Articles

    [1]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [2]He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
    [3]Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345
    [4]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [5]Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416
    [6]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [7]Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053
    [8]Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375
    [9]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(4)

    1. 齐婉芯,陈婷婷,宋佳力,安新民. 基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质. 北京林业大学学报. 2024(12): 92-102 . 本站查看
    2. 汪格格,邱诗蕊,张琳晗,杨国伟,徐小云,汪爱羚,曾淑华,刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究. 生物技术通报. 2023(02): 183-192 .
    3. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    4. 庞俊秀,薛惠芬,刘婉秋,龙鸿. 三倍体丹参杂交种的花粉形态研究. 广西植物. 2021(12): 1996-2003 .

    Other cited types(3)

Catalog

    Article views (8652) PDF downloads (25) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return