• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
HU Jia-hang, JI Xiao-di Xiao-di, LI Feng-long, GUO Ming-hui. Assessment of embodied environmental impact on log wooden wall member.[J]. Journal of Beijing Forestry University, 2017, 39(6): 116-122. DOI: 10.13332/j.1000-1522.20160307
Citation: HU Jia-hang, JI Xiao-di Xiao-di, LI Feng-long, GUO Ming-hui. Assessment of embodied environmental impact on log wooden wall member.[J]. Journal of Beijing Forestry University, 2017, 39(6): 116-122. DOI: 10.13332/j.1000-1522.20160307

Assessment of embodied environmental impact on log wooden wall member.

More Information
  • Received Date: September 27, 2016
  • Revised Date: April 03, 2017
  • Published Date: May 31, 2017
  • Life cycle assessment (LCA) based on the cradle-to-gate inventories from factory was used to examine the raw material, energy consumption and environment load of embodied process on the functional unit of 1 m3 wall product. Moreover, CML-2001 method and database provided by GaBi were used to evaluate environment impact of wall product in the life circle scope. The results were as follows: 1) six impact categories had been assessed in detail in the LCA study: global warming potential (GWP), human toxic potential(HTP), acidification(AP), eutrophication (EP), photochemical ozone creation potential (POCP), abiotic depletion (ADP) and the absolute values were 3.50×10-9, 2.11×10-9, 1.38×10-10, 1.38×10-10, 2.33 ×10-11, 1.30×10-12, respectively. GWP and HTP were mainly responsible for the preparation of wall product, accounted for 59.2% and 35.7% of total environmental impacts, respectively. 2) To carry out this analysis, a wood factory was assessed in detail and the process was divided into four stages: the raw material obtaining stage, the glued laminated timber preparation stage, the wood wall preparation stage, the painting and packing stage and the absolute values of each stage were 2.40×10-9, 7.32×10-10, 4.25×10-10, 7.20×10-11, respectively. Raw material obtaining stage was the main stage of environment impacting. 3)Excluding the positive impact of the photosynthesis, HTP was mainly responsible for the environmental deterioration and accounted for 35.7% of total environmental impact. Raw material obtaining, glulam preparation and wall preparation caused the most of HTP. The detailed analysis of each stage identified the most important environmental hot spots of HTP: the wood dust and electricity usage.
  • [1]
    LI X, ZHU Y, ZHANG Z. An LCA-based environmental impact assessment model for construction processes[J]. Building & Environment, 2010, 45(3):766-775. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c7e6f46611bf70abb735af03692291ca
    [2]
    ACQUAYE A A, DUFFY A P. Input-output analysis of Irish construction sector greenhouse gas emissions[J]. Building & Environment, 2010, 45(3):784-791 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=806424705ab0204b29f73ae3982143c8
    [3]
    黄东梅, 周培国, 张齐生.竹结构民宅的生命周期评价[J].北京林业大学学报, 2012, 34(5):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201205025

    HUANG D M, ZHOU P G, ZHANG Q S. Life cycle assessment of bamboo-constructed house[J].Journal of Beijing Forestry University, 2012, 34(5):148-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlydxxb201205025
    [4]
    燕鹏飞, 杨军.木结构产品物化环境影响的定量评价[J].清华大学学报(自然科学版), 2008, 48(9):1395-1398. doi: 10.3321/j.issn:1000-0054.2008.09.006

    YAN P F, YANG J. Quantitative assessment of the embodied environmental impact of wood products[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(9):1395-1398. doi: 10.3321/j.issn:1000-0054.2008.09.006
    [5]
    LI J, YUAN Y, GUAN X. Assessing the environmental impacts of glued-laminated bamboo based on a life cycle assessment[J]. BioResources, 2016, 11(1): 1941-1950.
    [6]
    GONZÁLEZ-GARCÍA S, LOZANO R G, ESTÉVEZ J C, et al. Environmental assessment and improvement alternatives of a ventilated wooden wall from LCA and DfE perspective[J]. International Journal of Life Cycle Assessment, 2012, 17(4): 432-443. doi: 10.1007/s11367-012-0384-0
    [7]
    环境管理生命周期评价要求与指南: GB/T 24044—2008[S].北京: 中国标准出版社, 2008.

    Environmental management-life circle assessment-requirements and guidelines: GB/T24044—2008[S].Beijing: Standards Press of China, 2008.
    [8]
    李兴福, 徐鹤.基于GaBi软件的钢材生命周期评价[J].环境保护与循环经济, 2009, 29(6):15-18. doi: 10.3969/j.issn.1674-1021.2009.06.009

    LI X F, XU H. Life circle assessment of steel based on GaBi[J]. Environmental Protection & Re-Cycling Economy, 2009, 29(6):15-18. doi: 10.3969/j.issn.1674-1021.2009.06.009
    [9]
    袁媛.基于改性木质素的环保型木质材料研制及其生命周期评价[D].哈尔滨: 东北林业大学, 2014. http: //cdmd.cnki.com.cn/Article/CDMD-10225-1016303866.htm

    YUAN Y.Preparation and life cycle assessment of environment-friendly wooden composites based on modified industrial lignins[D]. Harbin: Northeast Forestry University, 2014. http: //cdmd.cnki.com.cn/Article/CDMD-10225-1016303866.htm
    [10]
    徐小宁.中国水泥工业的生命周期评价[D].大连: 大连理工大学, 2013. http: //cdmd.cnki.com.cn/Article/CDMD-10141-1013197759.htm

    XU X N. Life cycle assessment of cement in China[D]. Dalian: Dalian University of Technology, 2013. http: //cdmd.cnki.com.cn/Article/CDMD-10141-1013197759.htm
    [11]
    ROBERTSON A B, LAM F C F, COLE R J. A Comparative cradle-to-gate life cycle assessment of mid-rise office building construction alternatives: laminated timber or reinforced concrete[J]. Buildings, 2012, 2(4):245-270. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201509008
    [12]
    MAHALLE L, ALENDAR A, MIHAI M, et al. A cradle-to-gate life cycle assessment of wood fibre-reinforced polylactic acid (PLA) and polylactic acid/thermoplastic starch (PLA/TPS) biocomposites[J]. International Journal of Life Cycle Assessment, 2014, 19(6):1305-1315. doi: 10.1007/s11367-014-0731-4
    [13]
    PUETTMANN M E, BERGMAN R, HUBBARD S, et al. Cradle-to-gate life-cycle inventory of US wood products production: CORRIM Phase I and Phase Ⅱ products[J]. Wood & Fiber Science, 2010, 42(3):15-28. https://www.researchgate.net/publication/263226117_Cradle-to-Gate_Life-Cycle_Inventory_and_Impact_Assessment_of_Wood_Fuel_Pellet_Manufacturing_from_Hardwood_Flooring_Residues_in_the_Southeastern_United_States
    [14]
    LIU J, HU H, XU J, et al. Optimizing enzymatic pretreatment of recycled fiber to improve its draining ability using response surface methodology[J]. BioResources, 2012, 7(2):2121-2140.
    [15]
    丁宁, 杨建新.中国化石能源生命周期清单分析[J].中国环境科学, 2015, 35(5):1592-1600. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201505041

    DING N, YANG J X. Life cycle inventory analysis of fossil energy in China[J].China Environmental Science, 2012, 35(5):1592-1600. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201505041
    [16]
    邓南圣, 王小兵.生命周期评价[M].北京:化学工业出版社, 2003.

    DENG N S, WANG X B. Life circle assessment[M].Beijing: Chemical Industry Press, 2003.
    [17]
    袁宝荣, 聂祚仁, 狄向华, 等.乙烯生产的生命周期评价影响评价与结果解释[J].化工进展, 2006, 25(4):432-435. doi: 10.3321/j.issn:1000-6613.2006.04.018

    YUAN B Y, NIE Z R, DI X H, et al. Life cycle inventories of fossil fuels in China final life cycle inventories[J]. Chemical Industry and Engineering Progress, 2006, 25(4):432-435. doi: 10.3321/j.issn:1000-6613.2006.04.018
    [18]
    徐小宁, 陈郁, 张树深, 等.复合硅酸盐水泥的生命周期评价[J].环境科学学报, 2013, 33(9):2632-2638. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201309038

    XU X N, CHEN Y, ZHANG S S, et al. Life cycle assessment of composite portland cement[J].Acta Scientiae Circumstantiae, 2013, 33(9):2632-2638. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201309038
  • Related Articles

    [1]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [2]Wu Chunbing, Wang Jingxue, Ji Xiaodong, Jiang Qian, He Jianjun, Liang Yushi. Spatial and temporal statistical characteristics of air density and its influence on basic wind pressure: a case study of Shandong Province, eastern China[J]. Journal of Beijing Forestry University, 2021, 43(5): 99-107. DOI: 10.12171/j.1000-1522.20210064
    [3]Zeng Aicong, Guo Xinbin, Zheng Wenxia, Wei Mao, Jin Quanfeng, Guo Futao. Temporal and spatial dynamic characteristics of forest fire in Zhejiang Province of eastern China based on MODIS satellite hot spot data[J]. Journal of Beijing Forestry University, 2020, 42(11): 39-46. DOI: 10.12171/j.1000-1522.20190483
    [4]Guan Zhuizhui, Zhang Yandong. Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot[J]. Journal of Beijing Forestry University, 2020, 42(8): 53-60. DOI: 10.12171/j.1000-1522.20200004
    [5]Zhang Jianjun, Chen Liqi, Li Jianguang, Sun Miao, Fan Yongming, Yu Xiaonan. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124-131. DOI: 10.12171/j.1000-1522.20190096
    [6]Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437
    [7]ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. DOI: 10.13332/j.1000-1522.20170089
    [8]YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
    [9]WANG Ge, HAN Lin, ZHANG Yu, . Temporal variation and spatial distribution of NDVI in northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91.
    [10]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
  • Cited by

    Periodical cited type(3)

    1. 胡馨丹,李瑶,张小花,梁娟红,张腾国. 外源ATP对油菜幼苗耐寒性的影响. 植物研究. 2021(02): 302-311 .
    2. 武永强,杨帆. 干扰Arf6抑制人前列腺癌细胞系DU145增殖、迁移及侵袭. 基础医学与临床. 2019(09): 1310-1315 .
    3. 王浩然,吕雪芹,张越,满奕,荆艳萍. eATP在植物生长发育及逆境胁迫中的作用. 电子显微学报. 2017(01): 83-90 .

    Other cited types(0)

Catalog

    Article views (8652) PDF downloads (25) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return