Citation: | Dong Zhijun, Gao Jianzhou, Yu Xiaonan. Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora[J]. Journal of Beijing Forestry University, 2022, 44(7): 117-125. DOI: 10.12171/j.1000-1522.20210325 |
[1] |
李琬, 项洪涛, 何宁, 等. 烯效唑(S3307)提高作物抗逆性研究进展[J]. 中国农学通报, 2020, 36(20): 101−106.
Li W, Xiang H T, He N, et al. Uniconazole (S3307) improving resistance of crops: a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 101−106.
|
[2] |
Ahmad I, Ahmad S, Yang X N, et al. Effect of uniconazole and nitrogen level on lodging resistance and yield potential of maize under medium and high plant density[J]. Plant Biology, 2021, 23(3): 485−496. doi: 10.1111/plb.13235
|
[3] |
Luo K, Xie C, Wang J, et al. Uniconazole, 6-benzyladenine, and diethyl aminoethyl hexanoate increase the yield of soybean by improving the photosynthetic efficiency and increasing grain filling in maize-soybean relay strip intercropping system[J]. Journal of Plant Growth Regulation, 2020: 1−12.
|
[4] |
魏世林. 植物生长调节剂对高粱生长发育的影响及调节剂筛选[D]. 保定: 河北农业大学, 2021.
Wei S L. Effects of plant growth regulators on growth and development of sorghum and selection of regulators[D]. Baoding: Hebei Agricultural University, 2021.
|
[5] |
项洪涛, 李琬, 郑殿峰, 等. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J]. 作物学报, 2021, 47(3): 494−506. doi: 10.3724/SP.J.1006.2021.04070
Xiang H T, Li W, Zheng D F, et al. Effect of uniconazole and waterlogging stress in seeding stage on the physiology and yield in adzuki bean[J]. Acta Agronomica Sinica, 2021, 47(3): 494−506. doi: 10.3724/SP.J.1006.2021.04070
|
[6] |
Huang Y L, Yue C J, Xiang J L, et al. Gene expression profile indicates involvement of uniconazole in Coix lachryma‐jobi L. seedlings at low temperature[J]. Food Science & Nutrition, 2020, 8(1): 534−546.
|
[7] |
周秀琳. 多效唑和烯效唑对金边吊兰的矮化效应研究[D]. 杭州: 浙江大学, 2017.
Zhou X L. Studies on the dwarfing effect of paclobutrazol and uniconazole to Chlorophytum capense ‘Vittatum’ [D]. Hangzhou: Zhejiang University, 2017.
|
[8] |
郑日如, 廖金, 吴昀, 等. 烯效唑对东方百合‘索邦’生长的影响[J]. 北方园艺, 2012(3): 72−74.
Zheng R R, Liao J, Wu Y, et al. Effect of uniconazole on growth of Lilium Oriental Hybrids ‘Sorbonne’[J]. Northern Horticulture, 2012(3): 72−74.
|
[9] |
钟颖颖, 廖易, 陆顺教, 等. 矮化剂作用机制及其在观赏植物上的研究进展[J]. 中国农学通报, 2020, 36(7): 69−75. doi: 10.11924/j.issn.1000-6850.casb20191000718
Zhong Y Y, Liao Y, Lu S J, et al. Dwarfing agent: mechanism of action and research progress in ornamental plant[J]. Chinese Agricultural Science Bulletin, 2020, 36(7): 69−75. doi: 10.11924/j.issn.1000-6850.casb20191000718
|
[10] |
秦魁杰. 芍药[M]. 北京: 中国林业出版社, 2014.
Qin K J. Peony[M]. Beijing: China Forestry Publishing House, 2014.
|
[11] |
刘利刚. 盆栽芍药研究[D]. 北京: 北京林业大学, 2009.
Liu L G. Studies on cultivation of potted herb peony [D]. Beijing: Beijing Forestry University, 2009.
|
[12] |
叶露莹. 芍药盆栽无土栽培基质研究[D]. 北京: 北京林业大学, 2010.
Ye L Y. Studies on potted soilless media of herb peony[D]. Beijing: Beijing Forestry University, 2010.
|
[13] |
解孝满. 菏泽芍药品种资源调查及盆栽促成栽培技术的研究[D]. 南京: 南京林业大学, 2005.
Xie X M. Research on the resources and pot-facilitating cultivation of Paeonia lactiflora in Heze[D]. Nanjing: Nanjing Forestry University, 2005.
|
[14] |
孙晓梅. 芍药容器苗生产技术研究[D]. 北京: 北京林业大学, 2014.
Sun X M. Studies on container plant production technology for herbaceous peony[D]. Beijing: Beijing Forestry University, 2014.
|
[15] |
董志君, 张建军, 范永明, 等. 3种植物生长延缓剂对盆栽芍药的矮化效应[J]. 东北林业大学学报, 2020, 48(9): 62−66. doi: 10.3969/j.issn.1000-5382.2020.09.012
Dong Z J, Zhang J J, Fan Y M, et al. Dwarfing effects of paclobutrazol, uniconazole and chlormequat on potted Paeonia lactiflora[J]. Journal of Northeast Forestry University, 2020, 48(9): 62−66. doi: 10.3969/j.issn.1000-5382.2020.09.012
|
[16] |
于晓南. 观赏芍药[M]. 北京: 中国林业出版社, 2019.
Yu X N. Herbaceous peonies[M]. Beijing: China Forestry Publishing House, 2019.
|
[17] |
赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207−210.
Zhao S J, Xu C C, Zou Q, et al. Improvements of method for measurement of malondialdehvde in plant tissues[J]. Plant Physiology Journal, 1994, 30(3): 207−210.
|
[18] |
孔祥生, 易现峰. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2008.
Kong X S, Yi X F. Plant physiology experiment technology[M]. Beijing: China Agriculture Press, 2008.
|
[19] |
张建军, 陈莉祺, 李建光, 等. 芍药根茎解剖结构特征及生长轮分析[J]. 北京林业大学学报, 2020, 42(5): 124−131. doi: 10.12171/j.1000-1522.20190096
Zhang J J, Chen L Q, Li J G, et al. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124−131. doi: 10.12171/j.1000-1522.20190096
|
[20] |
许长成, 赵世杰, 邹琦, 等. 植物膜脂过氧化水平硫代巴比妥酸测定法中的干扰因素[J]. 植物生理学通讯, 1993, 29(5): 361−363.
Xu C C, Zhao S J, Zou Q, et al. Interference in measurement of lipid peroxidation by thiobarbituric acid test in plant tissues[J]. Plant Physiology Journal, 1993, 29(5): 361−363.
|
[21] |
师超, 徐朗莱. 盐胁迫诱导小麦根尖细胞的氧化伤害及死亡[J]. 南京农业大学学报, 2010, 33(1): 16−20.
Shi C, Xu L L. Salt stress-induced oxidative damage and death of cell in wheat root tips[J]. Journal of Nanjing Agricultural University, 2010, 33(1): 16−20.
|
[22] |
王诗雅, 郑殿峰, 冯乃杰, 等. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988−2000.
Wang S Y, Zheng D F, Feng N J, et al. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean[J]. Acta Agronomica Sinica, 2021, 47(10): 1988−2000.
|
[23] |
Shi X D, Chen S Y, Jia Z K. The dwarfing effects of different plant growth retardants on Magnolia wufengensis L. Y. Ma et L. R. Wang[J]. Forests, 2020, 12(1): 19. doi: 10.3390/f12010019
|
[24] |
王士红, 荆奇, 戴廷波, 等. 不同年代冬小麦品种旗叶光合特性和产量的演变特征[J]. 应用生态学报, 2008, 19(6): 1255−1260.
Wang S H, Jing Q, Dai T B, et al. Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1255−1260.
|
[25] |
冯立娟, 苑兆和, 尹燕雷, 等. 多效唑对大丽花叶片光合特性和超微结构的影响[J]. 草业学报, 2014, 23(4): 114−121. doi: 10.11686/cyxb20140414
Feng L J, Yuan Z H, Yin Y L, et al. Effects of paclobutrazol on the photosynthetic characteristics and ultrastructure of Dahlia pinnata leaves[J]. Acta Prataculturae Sinica, 2014, 23(4): 114−121. doi: 10.11686/cyxb20140414
|
[26] |
罗栋. 植物生长延缓剂对地涌金莲矮化效应研究[D]. 北京: 中国林业科学研究院, 2009.
Luo D. Dwarf effect of plant growth retardants on Musella lasiocarpa[D]. Beijing: Chinese Academy of Forestry, 2009.
|
[27] |
Schwartz A, Wu W H, Tucker E B, et al. Inhibition of inward K + channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action[J]. Proceedings of the National Academy of Sciences, 1994, 91(9): 4019−4023. doi: 10.1073/pnas.91.9.4019
|
[28] |
Jiang Y, Sun Y F, Zheng D F, et al. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp (Cannabis sativa L.)[J]. Scientific Reports, 2021, 11(1): 14476. doi: 10.1038/s41598-021-93820-6
|
[29] |
Huang K W, Xiao Y Y, Dong Y P, et al. Effects of uniconazole on the physiological characteristics and cadmium accumulation of Cyphomandra betacea seedlings[J]. Environmental Progress & Sustainable Energy, 2021, 40(4): e13614.
|
[30] |
刘春娟, 宋双伟, 冯乃杰, 等. 干旱胁迫及复水条件下烯效唑对大豆幼苗形态和生理特性的影响[J]. 干旱地区农业研究, 2016, 34(6): 222−227, 256. doi: 10.7606/j.issn.1000-7601.2016.06.34
Liu C J, Song S W, Feng N J, et al. Effects of plant growth regulator S3307 on morphological and physiological characteristics of soybean seedling under drought stress and rewater treatment[J]. Agricultural Research in the Arid Areas, 2016, 34(6): 222−227, 256. doi: 10.7606/j.issn.1000-7601.2016.06.34
|
[31] |
潘天天, 李彦, 王忠媛, 等. 湿润区3种杉科植物枝和根木质部的水力功能与解剖结构的关系[J]. 林业科学, 2020, 56(12): 49−59. doi: 10.11707/j.1001-7488.20201206
Pan T T, Li Y, Wang Z Y, et al. Relationship between the hydraulic function and the anatomical structure of branch and root xylem in three Taxodiaceae species in humid area[J]. Scientia Silvae Sinicae, 2020, 56(12): 49−59. doi: 10.11707/j.1001-7488.20201206
|
[32] |
范志霞, 陈越悦, 付荷玲. 成都地区10种园林灌木叶片结构与抗旱性关系研究[J]. 植物科学学报, 2019, 37(1): 70−78. doi: 10.11913/PSJ.2095-0837.2019.10070
Fan Z X, Chen Y Y, Fu H L. Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu[J]. Plant Science Journal, 2019, 37(1): 70−78. doi: 10.11913/PSJ.2095-0837.2019.10070
|
[33] |
乌佳美, 唐敬超, 史作民, 等. 巴郎山糙皮桦叶片光合氮利用效率的海拔响应[J]. 应用生态学报, 2019, 30(3): 751−758.
Wu J M, Tang J C, Shi Z M, et al. Response of photosynthetic nitrogen use efficiency in Betula utilis to altitudinal variation along Balang Mountain, Sichuan, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 751−758.
|
[34] |
李宁毅, 时彦平, 王吉振. 水分胁迫下烯效唑对百日草幼苗光合特性及叶解剖结构的影响[J]. 西北植物学报, 2012, 32(8): 1626−1631. doi: 10.3969/j.issn.1000-4025.2012.08.019
Li N Y, Shi Y P, Wang J Z. Effect of uniconazole on photosynthetic characters and leaf anatomical structure of Zinnia seedlings under water stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(8): 1626−1631. doi: 10.3969/j.issn.1000-4025.2012.08.019
|
[35] |
孟娜, 徐航, 魏明, 等. 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响[J]. 西北植物学报, 2017, 37(10): 1988−1995. doi: 10.7606/j.issn.1000-4025.2017.10.1988
Meng N, Xu H, Wei M, et al. Effect of foliar uniconazole spraying under salt stress on physiological and anatomical characteristics in Glycine max[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 1988−1995. doi: 10.7606/j.issn.1000-4025.2017.10.1988
|
[36] |
Meister R, Rajani M S, Ruzicka D, et al. Challenges of modifying root traits in crops for agriculture[J]. Trends in Plant Science, 2014, 19(12): 779−788. doi: 10.1016/j.tplants.2014.08.005
|
[37] |
Chimungu J G, Brown K M, Lynch J P. Reduced root cortical cell file number improves drought tolerance in maize[J]. Plant Physiology, 2014, 166(4): 1943−1955. doi: 10.1104/pp.114.249037
|
[38] |
孟娜, 魏胜华. 喷施烯效唑调控大豆根部解剖结构缓解盐逆境伤害[J]. 生态学杂志, 2018, 37(12): 3605−3609.
Meng N, Wei S H. Uniconazole spraying ameliorates salt injury to soybean seedlings by regulating anatomical structure in roots[J]. Chinese Journal of Ecology, 2018, 37(12): 3605−3609.
|
[1] | Qi Chusheng, Zhan Zhibin, Dai Lu. Analysis methods and characteristic parameters of wood microstructure[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240287 |
[2] | Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. DOI: 10.12171/j.1000-1522.20210024 |
[3] | GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098 |
[4] | LIU Bing-mei, QI Qi, LIU Shu-xin, CHAO Nan, JIANG Xiang-ning, GAI Ying. Comparison of morphological and physiological characteristics of five poplar species in China[J]. Journal of Beijing Forestry University, 2015, 37(6): 35-44. DOI: 10.13332/j.1000-1522.20150063 |
[5] | MA Ni, SUN Zhen-yuan, LIU Qing-hua, HAN Lei, JU Guan-sheng, QIAN Yong-qiang, LIU Jun-xiang. Seasonal variation of leaf anatomical structure of Euonymus japonicus ‘Cu Zhi’[J]. Journal of Beijing Forestry University, 2011, 33(6): 112-118. |
[6] | ZHAO Guang-jie. The course of chemical reaction and microstructure evolution of wood-based carbon fibers during carbonization and graphitization[J]. Journal of Beijing Forestry University, 2010, 32(2): 201-204. |
[7] | MA Xiao-jun, ZHAO Guang-jie. Effects of carbonized temperature on microstructure of carbon fiber precursors prepared from liquefied wood[J]. Journal of Beijing Forestry University, 2009, 31(5): 112-116. |
[8] | SUN De-lin, LIU Wen-jin, YU Xian-chun. Effects of sintering temperature and PF resin content on phases and microstructure characteristics of woodceramics.[J]. Journal of Beijing Forestry University, 2009, 31(4): 112-117. |
[9] | ZHOU Yong-dong, FU Feng, LI Xian-jun, JIANG Xiao-mei, CHEN Zhi-lin. Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla[J]. Journal of Beijing Forestry University, 2009, 31(2): 146-150. |
[10] | FU Yun-lin, ZHAO Guang-jie. Microstructure of wood-silicon dioxide composite[J]. Journal of Beijing Forestry University, 2006, 28(5): 119-124. |