• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Dong Zhijun, Gao Jianzhou, Yu Xiaonan. Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora[J]. Journal of Beijing Forestry University, 2022, 44(7): 117-125. DOI: 10.12171/j.1000-1522.20210325
Citation: Dong Zhijun, Gao Jianzhou, Yu Xiaonan. Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora[J]. Journal of Beijing Forestry University, 2022, 44(7): 117-125. DOI: 10.12171/j.1000-1522.20210325

Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora

More Information
  • Received Date: August 25, 2021
  • Revised Date: June 07, 2022
  • Accepted Date: June 08, 2022
  • Available Online: June 12, 2022
  • Published Date: July 24, 2022
  •   Objective  This paper aims to explore the effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora, in order to provide a certain reference for the commercial production of potted P. lactiflora.
      Method  The cultivar ‘Dafugui’ was used as the experimental material, the leaves were sprayed with uniconazole (40 mg/L) as the treatment, and the leaves were sprayed with clean water (0 mg/L) as the control. Physiological characteristics and microstructure of the leaves and roots were measured and observed at four different growth and development stages (leaf-expansion stage, flower-bud stage, pigmented stage, full-flowering stage) of potted P. lactiflora.
      Result  Compared with the control, uniconazole treatment can significantly reduce the production and accumulation of thiobarbituric acid reactive substances (TBARS) in the leaves and roots of potted P. lactiflora, increase cell membrane permeability, maintain cell membrane stability, and thereby increase the adaptability of potted P. lactiflora to the environment. The total chlorophyll and carotenoid contents of potted P. lactiflora initially increased but then decreased and were highest at the pigmented stage. After the treatment of uniconazole, the leaves of potted P. lactiflora were thicker with the sponge and palisade tissue cells arranging tightly and orderly. Compared with the control, the proportion of the root stele was larger, the proportion of the cortical cell became smaller.
      Conclusion  Studies have shown that foliar spraying uniconazole can effectively improve the environmental adaptability of potted P. lactiflora, increase the contents of photosynthetic pigment, and change the internal tissue structure of leaves and roots. Foliar spraying with uniconazole may be an effective measure for potted plants production.
  • [1]
    李琬, 项洪涛, 何宁, 等. 烯效唑(S3307)提高作物抗逆性研究进展[J]. 中国农学通报, 2020, 36(20): 101−106.

    Li W, Xiang H T, He N, et al. Uniconazole (S3307) improving resistance of crops: a review[J]. Chinese Agricultural Science Bulletin, 2020, 36(20): 101−106.
    [2]
    Ahmad I, Ahmad S, Yang X N, et al. Effect of uniconazole and nitrogen level on lodging resistance and yield potential of maize under medium and high plant density[J]. Plant Biology, 2021, 23(3): 485−496. doi: 10.1111/plb.13235
    [3]
    Luo K, Xie C, Wang J, et al. Uniconazole, 6-benzyladenine, and diethyl aminoethyl hexanoate increase the yield of soybean by improving the photosynthetic efficiency and increasing grain filling in maize-soybean relay strip intercropping system[J]. Journal of Plant Growth Regulation, 2020: 1−12.
    [4]
    魏世林. 植物生长调节剂对高粱生长发育的影响及调节剂筛选[D]. 保定: 河北农业大学, 2021.

    Wei S L. Effects of plant growth regulators on growth and development of sorghum and selection of regulators[D]. Baoding: Hebei Agricultural University, 2021.
    [5]
    项洪涛, 李琬, 郑殿峰, 等. 幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J]. 作物学报, 2021, 47(3): 494−506. doi: 10.3724/SP.J.1006.2021.04070

    Xiang H T, Li W, Zheng D F, et al. Effect of uniconazole and waterlogging stress in seeding stage on the physiology and yield in adzuki bean[J]. Acta Agronomica Sinica, 2021, 47(3): 494−506. doi: 10.3724/SP.J.1006.2021.04070
    [6]
    Huang Y L, Yue C J, Xiang J L, et al. Gene expression profile indicates involvement of uniconazole in Coix lachryma‐jobi L. seedlings at low temperature[J]. Food Science & Nutrition, 2020, 8(1): 534−546.
    [7]
    周秀琳. 多效唑和烯效唑对金边吊兰的矮化效应研究[D]. 杭州: 浙江大学, 2017.

    Zhou X L. Studies on the dwarfing effect of paclobutrazol and uniconazole to Chlorophytum capense ‘Vittatum’ [D]. Hangzhou: Zhejiang University, 2017.
    [8]
    郑日如, 廖金, 吴昀, 等. 烯效唑对东方百合‘索邦’生长的影响[J]. 北方园艺, 2012(3): 72−74.

    Zheng R R, Liao J, Wu Y, et al. Effect of uniconazole on growth of Lilium Oriental Hybrids ‘Sorbonne’[J]. Northern Horticulture, 2012(3): 72−74.
    [9]
    钟颖颖, 廖易, 陆顺教, 等. 矮化剂作用机制及其在观赏植物上的研究进展[J]. 中国农学通报, 2020, 36(7): 69−75. doi: 10.11924/j.issn.1000-6850.casb20191000718

    Zhong Y Y, Liao Y, Lu S J, et al. Dwarfing agent: mechanism of action and research progress in ornamental plant[J]. Chinese Agricultural Science Bulletin, 2020, 36(7): 69−75. doi: 10.11924/j.issn.1000-6850.casb20191000718
    [10]
    秦魁杰. 芍药[M]. 北京: 中国林业出版社, 2014.

    Qin K J. Peony[M]. Beijing: China Forestry Publishing House, 2014.
    [11]
    刘利刚. 盆栽芍药研究[D]. 北京: 北京林业大学, 2009.

    Liu L G. Studies on cultivation of potted herb peony [D]. Beijing: Beijing Forestry University, 2009.
    [12]
    叶露莹. 芍药盆栽无土栽培基质研究[D]. 北京: 北京林业大学, 2010.

    Ye L Y. Studies on potted soilless media of herb peony[D]. Beijing: Beijing Forestry University, 2010.
    [13]
    解孝满. 菏泽芍药品种资源调查及盆栽促成栽培技术的研究[D]. 南京: 南京林业大学, 2005.

    Xie X M. Research on the resources and pot-facilitating cultivation of Paeonia lactiflora in Heze[D]. Nanjing: Nanjing Forestry University, 2005.
    [14]
    孙晓梅. 芍药容器苗生产技术研究[D]. 北京: 北京林业大学, 2014.

    Sun X M. Studies on container plant production technology for herbaceous peony[D]. Beijing: Beijing Forestry University, 2014.
    [15]
    董志君, 张建军, 范永明, 等. 3种植物生长延缓剂对盆栽芍药的矮化效应[J]. 东北林业大学学报, 2020, 48(9): 62−66. doi: 10.3969/j.issn.1000-5382.2020.09.012

    Dong Z J, Zhang J J, Fan Y M, et al. Dwarfing effects of paclobutrazol, uniconazole and chlormequat on potted Paeonia lactiflora[J]. Journal of Northeast Forestry University, 2020, 48(9): 62−66. doi: 10.3969/j.issn.1000-5382.2020.09.012
    [16]
    于晓南. 观赏芍药[M]. 北京: 中国林业出版社, 2019.

    Yu X N. Herbaceous peonies[M]. Beijing: China Forestry Publishing House, 2019.
    [17]
    赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207−210.

    Zhao S J, Xu C C, Zou Q, et al. Improvements of method for measurement of malondialdehvde in plant tissues[J]. Plant Physiology Journal, 1994, 30(3): 207−210.
    [18]
    孔祥生, 易现峰. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2008.

    Kong X S, Yi X F. Plant physiology experiment technology[M]. Beijing: China Agriculture Press, 2008.
    [19]
    张建军, 陈莉祺, 李建光, 等. 芍药根茎解剖结构特征及生长轮分析[J]. 北京林业大学学报, 2020, 42(5): 124−131. doi: 10.12171/j.1000-1522.20190096

    Zhang J J, Chen L Q, Li J G, et al. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124−131. doi: 10.12171/j.1000-1522.20190096
    [20]
    许长成, 赵世杰, 邹琦, 等. 植物膜脂过氧化水平硫代巴比妥酸测定法中的干扰因素[J]. 植物生理学通讯, 1993, 29(5): 361−363.

    Xu C C, Zhao S J, Zou Q, et al. Interference in measurement of lipid peroxidation by thiobarbituric acid test in plant tissues[J]. Plant Physiology Journal, 1993, 29(5): 361−363.
    [21]
    师超, 徐朗莱. 盐胁迫诱导小麦根尖细胞的氧化伤害及死亡[J]. 南京农业大学学报, 2010, 33(1): 16−20.

    Shi C, Xu L L. Salt stress-induced oxidative damage and death of cell in wheat root tips[J]. Journal of Nanjing Agricultural University, 2010, 33(1): 16−20.
    [22]
    王诗雅, 郑殿峰, 冯乃杰, 等. 植物生长调节剂S3307对苗期淹水胁迫下大豆生理特性和显微结构的影响[J]. 作物学报, 2021, 47(10): 1988−2000.

    Wang S Y, Zheng D F, Feng N J, et al. Effects of uniconazole on physiological characteristics and microstructure under waterlogging stress at seedling stage in soybean[J]. Acta Agronomica Sinica, 2021, 47(10): 1988−2000.
    [23]
    Shi X D, Chen S Y, Jia Z K. The dwarfing effects of different plant growth retardants on Magnolia wufengensis L. Y. Ma et L. R. Wang[J]. Forests, 2020, 12(1): 19. doi: 10.3390/f12010019
    [24]
    王士红, 荆奇, 戴廷波, 等. 不同年代冬小麦品种旗叶光合特性和产量的演变特征[J]. 应用生态学报, 2008, 19(6): 1255−1260.

    Wang S H, Jing Q, Dai T B, et al. Evolution characteristics of flag leaf photosynthesis and grain yield of wheat cultivars bred in different years[J]. Chinese Journal of Applied Ecology, 2008, 19(6): 1255−1260.
    [25]
    冯立娟, 苑兆和, 尹燕雷, 等. 多效唑对大丽花叶片光合特性和超微结构的影响[J]. 草业学报, 2014, 23(4): 114−121. doi: 10.11686/cyxb20140414

    Feng L J, Yuan Z H, Yin Y L, et al. Effects of paclobutrazol on the photosynthetic characteristics and ultrastructure of Dahlia pinnata leaves[J]. Acta Prataculturae Sinica, 2014, 23(4): 114−121. doi: 10.11686/cyxb20140414
    [26]
    罗栋. 植物生长延缓剂对地涌金莲矮化效应研究[D]. 北京: 中国林业科学研究院, 2009.

    Luo D. Dwarf effect of plant growth retardants on Musella lasiocarpa[D]. Beijing: Chinese Academy of Forestry, 2009.
    [27]
    Schwartz A, Wu W H, Tucker E B, et al. Inhibition of inward K + channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action[J]. Proceedings of the National Academy of Sciences, 1994, 91(9): 4019−4023. doi: 10.1073/pnas.91.9.4019
    [28]
    Jiang Y, Sun Y F, Zheng D F, et al. Physiological and transcriptome analyses for assessing the effects of exogenous uniconazole on drought tolerance in hemp (Cannabis sativa L.)[J]. Scientific Reports, 2021, 11(1): 14476. doi: 10.1038/s41598-021-93820-6
    [29]
    Huang K W, Xiao Y Y, Dong Y P, et al. Effects of uniconazole on the physiological characteristics and cadmium accumulation of Cyphomandra betacea seedlings[J]. Environmental Progress & Sustainable Energy, 2021, 40(4): e13614.
    [30]
    刘春娟, 宋双伟, 冯乃杰, 等. 干旱胁迫及复水条件下烯效唑对大豆幼苗形态和生理特性的影响[J]. 干旱地区农业研究, 2016, 34(6): 222−227, 256. doi: 10.7606/j.issn.1000-7601.2016.06.34

    Liu C J, Song S W, Feng N J, et al. Effects of plant growth regulator S3307 on morphological and physiological characteristics of soybean seedling under drought stress and rewater treatment[J]. Agricultural Research in the Arid Areas, 2016, 34(6): 222−227, 256. doi: 10.7606/j.issn.1000-7601.2016.06.34
    [31]
    潘天天, 李彦, 王忠媛, 等. 湿润区3种杉科植物枝和根木质部的水力功能与解剖结构的关系[J]. 林业科学, 2020, 56(12): 49−59. doi: 10.11707/j.1001-7488.20201206

    Pan T T, Li Y, Wang Z Y, et al. Relationship between the hydraulic function and the anatomical structure of branch and root xylem in three Taxodiaceae species in humid area[J]. Scientia Silvae Sinicae, 2020, 56(12): 49−59. doi: 10.11707/j.1001-7488.20201206
    [32]
    范志霞, 陈越悦, 付荷玲. 成都地区10种园林灌木叶片结构与抗旱性关系研究[J]. 植物科学学报, 2019, 37(1): 70−78. doi: 10.11913/PSJ.2095-0837.2019.10070

    Fan Z X, Chen Y Y, Fu H L. Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu[J]. Plant Science Journal, 2019, 37(1): 70−78. doi: 10.11913/PSJ.2095-0837.2019.10070
    [33]
    乌佳美, 唐敬超, 史作民, 等. 巴郎山糙皮桦叶片光合氮利用效率的海拔响应[J]. 应用生态学报, 2019, 30(3): 751−758.

    Wu J M, Tang J C, Shi Z M, et al. Response of photosynthetic nitrogen use efficiency in Betula utilis to altitudinal variation along Balang Mountain, Sichuan, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 751−758.
    [34]
    李宁毅, 时彦平, 王吉振. 水分胁迫下烯效唑对百日草幼苗光合特性及叶解剖结构的影响[J]. 西北植物学报, 2012, 32(8): 1626−1631. doi: 10.3969/j.issn.1000-4025.2012.08.019

    Li N Y, Shi Y P, Wang J Z. Effect of uniconazole on photosynthetic characters and leaf anatomical structure of Zinnia seedlings under water stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(8): 1626−1631. doi: 10.3969/j.issn.1000-4025.2012.08.019
    [35]
    孟娜, 徐航, 魏明, 等. 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响[J]. 西北植物学报, 2017, 37(10): 1988−1995. doi: 10.7606/j.issn.1000-4025.2017.10.1988

    Meng N, Xu H, Wei M, et al. Effect of foliar uniconazole spraying under salt stress on physiological and anatomical characteristics in Glycine max[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(10): 1988−1995. doi: 10.7606/j.issn.1000-4025.2017.10.1988
    [36]
    Meister R, Rajani M S, Ruzicka D, et al. Challenges of modifying root traits in crops for agriculture[J]. Trends in Plant Science, 2014, 19(12): 779−788. doi: 10.1016/j.tplants.2014.08.005
    [37]
    Chimungu J G, Brown K M, Lynch J P. Reduced root cortical cell file number improves drought tolerance in maize[J]. Plant Physiology, 2014, 166(4): 1943−1955. doi: 10.1104/pp.114.249037
    [38]
    孟娜, 魏胜华. 喷施烯效唑调控大豆根部解剖结构缓解盐逆境伤害[J]. 生态学杂志, 2018, 37(12): 3605−3609.

    Meng N, Wei S H. Uniconazole spraying ameliorates salt injury to soybean seedlings by regulating anatomical structure in roots[J]. Chinese Journal of Ecology, 2018, 37(12): 3605−3609.
  • Related Articles

    [1]Qi Chusheng, Zhan Zhibin, Dai Lu. Analysis methods and characteristic parameters of wood microstructure[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240287
    [2]Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. DOI: 10.12171/j.1000-1522.20210024
    [3]GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098
    [4]LIU Bing-mei, QI Qi, LIU Shu-xin, CHAO Nan, JIANG Xiang-ning, GAI Ying. Comparison of morphological and physiological characteristics of five poplar species in China[J]. Journal of Beijing Forestry University, 2015, 37(6): 35-44. DOI: 10.13332/j.1000-1522.20150063
    [5]MA Ni, SUN Zhen-yuan, LIU Qing-hua, HAN Lei, JU Guan-sheng, QIAN Yong-qiang, LIU Jun-xiang. Seasonal variation of leaf anatomical structure of Euonymus japonicus ‘Cu Zhi’[J]. Journal of Beijing Forestry University, 2011, 33(6): 112-118.
    [6]ZHAO Guang-jie. The course of chemical reaction and microstructure evolution of wood-based carbon fibers during carbonization and graphitization[J]. Journal of Beijing Forestry University, 2010, 32(2): 201-204.
    [7]MA Xiao-jun, ZHAO Guang-jie. Effects of carbonized temperature on microstructure of carbon fiber precursors prepared from liquefied wood[J]. Journal of Beijing Forestry University, 2009, 31(5): 112-116.
    [8]SUN De-lin, LIU Wen-jin, YU Xian-chun. Effects of sintering temperature and PF resin content on phases and microstructure characteristics of woodceramics.[J]. Journal of Beijing Forestry University, 2009, 31(4): 112-117.
    [9]ZHOU Yong-dong, FU Feng, LI Xian-jun, JIANG Xiao-mei, CHEN Zhi-lin. Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla[J]. Journal of Beijing Forestry University, 2009, 31(2): 146-150.
    [10]FU Yun-lin, ZHAO Guang-jie. Microstructure of wood-silicon dioxide composite[J]. Journal of Beijing Forestry University, 2006, 28(5): 119-124.
  • Cited by

    Periodical cited type(5)

    1. 韩春宁,郑殿峰,冯乃杰,陈观杰,张淑玉,周行. 野生稻长毛谷旺盛生命力解析及其对烯效唑的响应. 浙江农业科学. 2024(01): 22-30 .
    2. 陈露,刘岳昆,郭芷若,邹晓彬,曲善民,苗阳阳. 烯效唑对盐胁迫下植物抗性影响的研究进展. 草学. 2024(01): 1-3+22 .
    3. 徐梦珠,秦志翔,张帆,崔云浩,王军娥,张毅,石玉. 不同供磷水平对青椒幼苗生长、光合作用及矿质元素吸收的影响. 西北农林科技大学学报(自然科学版). 2024(02): 104-112 .
    4. 王燕,蒋倩,王亚丽,陶甜甜,汪雒璿,杜鹏鹏,白雪. 烯效唑对盐碱胁迫下万寿菊生长及生理特性的影响. 草业科学. 2024(04): 822-835 .
    5. 林榕燕,林兵,孔兰,吴建设,钟淮钦. 植物生长调节剂对杂交兰‘双艺金龙’株型控制的影响. 东南园艺. 2023(01): 18-23 .

    Other cited types(1)

Catalog

    Article views (667) PDF downloads (53) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return