Citation: | Lu Dongxu, Geng Xueqi, Cui Ziyi, Wang Shiyu, Wang Lina, Yu Yongqiang, Tang Yakun. Nutrient utilization characteristics and stand quality of Robinia pseudoacacia at different stand ages in the loess hilly region of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(12): 90-99. DOI: 10.12171/j.1000-1522.20230058 |
Robinia pseudoacacia has been introduced to the Loess Plateau for soil and water conservation and ecological restoration because of its strong nitrogen fixation ability, fast growth speed and barren resistance. This study focused on the nutrient utilization characteristics and stand quality of R. pseudoacacia plantation at different ages in the loess hilly region, to provide theoretical basis for the evaluation and rational management of this plantation.
The stand structure and diversity of understory vegetation were investigated for R. pseudoacacia in 13, 25, 33 and 43-years plantations in Zhifanggou Watershed of northwestern China. The contents of C, N and P in leaves, branches, roots of R. pseudoacacia and soil were determined. In addition, the leaf nutrient use and resorption efficiency of R. pseudoacacia and the stoichiometric internal stability of N and P in leaves, branches, and roots were calculated, to evaluate the stand quality index of R. pseudoacacia plantation at different stand ages.
(1) The N and P of content of R. pseudoacacia leaves and soil were significantly increased with increased stand age (P < 0.05), and the leaves N∶P were higher than 20 among all stand ages. The leaf nutrient use efficiency of N and P was significantly decreased; however, the leaf nutrient resorption efficiency of N and P significantly were significantly increased with increased stand age (P < 0.05). The leaf nutrient use and resorption efficiency of P were higher than those of N. (2) Both the internal stability of N, P elements and N∶P in different organs of R. pseudoacacia and the diversity index of understory vegetation reached the maximum value at 25-years plantations; (3) The stand quality index of 25-year-old R. pseudoacacia plantation was significantly higher than other stand ages (P < 0.05).
The growth of R. pseudoacacia is mainly limited by P content, R. pseudoacacia changes N, P content and internal stability of various organs by adjusting nutrient utilization characteristics. Both the maximum N, P and N∶P internal stability values and the highest understory vegetation diversity are observed for R. pseudoacacia at 25-years plantations, result in the highest stand quality index of this plantation at that stand age.
[1] |
Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540−550. doi: 10.1111/j.1461-0248.2000.00185.x
|
[2] |
Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: is there a “Redfield Ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235−252. doi: 10.1007/s10533-007-9132-0
|
[3] |
Güsewell S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
|
[4] |
Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
|
[5] |
Deng J, Wang S, Ren C, et al. Nitrogen and phosphorus resorption in relation to nutrition limitation along the chronosequence of black locust (Robinia pseudoacacia L.) plantation[J/OL]. Forests, 2019, 10(3): 261[2022−11−06]. https://doi.org/10.3390/f10030261.
|
[6] |
陈婵, 张仕吉, 李雷达, 等. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658−671. doi: 10.17521/cjpe.2019.0018
Chen C, Zhang S J, Li L D, et al. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China[J]. Chinese Journal of Plant Ecology, 2019, 43(8): 658−671. doi: 10.17521/cjpe.2019.0018
|
[7] |
熊星烁, 蔡宏宇, 李耀琪, 等. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105
Xiong X S, Cai H Y, Li Y Q, et al. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105
|
[8] |
高德新, 张伟, 任成杰, 等. 黄土高原典型植被恢复过程土壤与叶片生态化学计量特征[J]. 生态学报, 2019, 39(10): 3622−3630.
Gao D X, Zhang W, Ren C J, et al. Ecological stoichiometry characteristics of soil and leaves during the recovery process of typical vegetation on the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(10): 3622−3630.
|
[9] |
Chen L L, Deng Q, Yuan Z Y, et al. Age-related C∶N∶P stoichiometry in two plantation forests in the Loess Plateau of China[J]. Ecological Engineering, 2018, 120: 14−22. doi: 10.1016/j.ecoleng.2018.05.021
|
[10] |
马任甜, 安韶山, 黄懿梅. 黄土高原不同林龄刺槐林碳、氮、磷化学计量特征[J]. 应用生态学报, 2017, 28(9): 2787−2793.
Ma R T, An S S, Huang Y M. C, N and P stoichiometry characteristics of different-aged Robinia pseudoacacia plantations on the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2787−2793.
|
[11] |
Liu Y, Fang Y, An S S. How C∶N∶P stoichiometry in soils and plants responds to succession in Robinia pseudoacacia forests on the Loess Plateau, China[J/OL]. Forest Ecology and Management, 2020, 475: 118394[2022−02−12]. https://doi.org/10.1016/j.foreco.2020.118394.
|
[12] |
Yu Q, Chen Q, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11): 1390−1399. doi: 10.1111/j.1461-0248.2010.01532.x
|
[13] |
Sun Z Z, Liu L L, Peng S S, et al. Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation[J]. Ecosystems, 2016, 19(4): 698−709. doi: 10.1007/s10021-016-9962-5
|
[14] |
张会儒, 雷相东, 张春雨, 等. 森林质量评价及精准提升理论与技术研究[J]. 北京林业大学学报, 2019, 41(5): 1−18.
Zhang H R, Lei X D, Zhang C Y, et al. Research on theory and technology of forest quality evaluation and precision improvement[J]. Journal of Beijing Forestry University, 2019, 41(5): 1−18.
|
[15] |
Dudley N, Schlaepfer R, Jackson W, et al. Forest quality: assessing forests at a landscape scale[M]. London: Earthscan, 2006.
|
[16] |
Su B Q, Shangguan Z P. Response of water use efficiency and plant-soil C∶N∶P stoichiometry to stand quality in Robinia pseudoacacia on the Loess Plateau of China[J/OL]. Catena, 2021, 206 [2022−10−15]. https://doi.org/10.1016/j.catena.2021.105571.
|
[17] |
Zhao W Z, Xiao H L, Liu Z M, et al. Soil degradation and restoration as affected by land use change in the semiarid Bashang area, northern China[J]. Catena, 2005, 59(2): 173−186. doi: 10.1016/j.catena.2004.06.004
|
[18] |
崔艳红, 毕华兴, 侯贵荣, 等. 晋西黄土残塬沟壑区刺槐林土壤入渗特征及影响因素分析[J]. 北京林业大学学报, 2021, 43(1): 77−87. doi: 10.12171/j.1000-1522.20200122
Cui Y H, Bi H X, Hou G R, et al. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77−87. doi: 10.12171/j.1000-1522.20200122
|
[19] |
Ma C, Luo Y, Shao M, et al. Environmental controls on sap flow in black locust forest in Loess Plateau, China[J/OL]. Scientific Reports, 2017, 7(1): 13160 [2022−10−15]. https://doi.org/10.1038/s41598-017-13532-8.
|
[20] |
韦景树, 李宗善, 冯晓玙, 等. 黄土高原人工刺槐林生长衰退的生态生理机制[J]. 应用生态学报, 2018, 29(7): 2433−2444.
Wei J S, Li Z S, Feng X Y, et al. Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China: a review[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2433−2444.
|
[21] |
苏卓侠, 苏冰倩, 上官周平. 黄土高原刺槐叶片−土壤生态化学计量参数对降雨量的响应特征[J]. 生态学报, 2020, 40(19): 7000−7008.
Su Z X, Su B Q, Shangguan Z P. Response characteristics of Robinia pseudoacacia leaf and soil ecological stoichiometric parameters to precipitation in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(19): 7000−7008.
|
[22] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 45−52.
Bao S D. Soil and agricultural chemistry analysis [M]. 3rd ed. Beijing: China Agriculture Press, 2000: 45−52.
|
[23] |
Aerts R, Cornelissen J H, van Logtestijn R S, et al. Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland[J]. Oecologia, 2007, 151(1): 132−139. doi: 10.1007/s00442-006-0575-0
|
[24] |
Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002.
|
[25] |
海旭莹, 董凌勃, 汪晓珍, 等. 黄土高原退耕还草地C、N、P生态化学计量特征对植物多样性的影响[J]. 生态学报, 2020, 40(23): 8570−8581.
Hai X Y, Dong L B, Wang X Z, et al. Effects of carbon, nitrogen, and phosphorus ecological stoichiometry characteristics on plant diversity since returning farmland to grassland on the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(23): 8570−8581.
|
[26] |
Hermans C, Hammond J P, White P J, et al. How do plants respond to nutrient shortage by biomass allocation?[J]. Trends Plant Science, 2006, 11(12): 610−617. doi: 10.1016/j.tplants.2006.10.007
|
[27] |
Qin J, Xi W M, Rahmlow A, et al. Effects of forest plantation types on leaf traits of Ulmus pumila and Robinia pseudoacacia on the Loess Plateau, China[J]. Ecological Engineering, 2016, 97: 416−425. doi: 10.1016/j.ecoleng.2016.10.038
|
[28] |
李单凤, 于顺利, 王国勋, 等. 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制[J]. 植物生态学报, 2015, 39(5): 453−465. doi: 10.17521/cjpe.2015.0044
Li D F, Yu S L, Wang G X, et al. Environmental heterogeneity and mechanism of stoichiometry properties of vegetative organs in dominant shrub communities across the Loess Plateau[J]. Chinese Journal of Plant Ecology, 2015, 39(5): 453−465. doi: 10.17521/cjpe.2015.0044
|
[29] |
Koerselman W, Meuleman A F M. The vegetation N∶P ratio a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441−1450. doi: 10.2307/2404783
|
[30] |
Yan Z, Tian D, Han W, et al. An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants[J]. Annals of Botany, 2017, 120(6): 937−942. doi: 10.1093/aob/mcx106
|
[31] |
王雅慧, 彭祚登, 李云. 豫西浅山区不同世代刺槐林土壤养分与结构特征[J]. 北京林业大学学报, 2020, 42(3): 54−64. doi: 10.12171/j.1000-1522.20190263
Wang Y H, Peng Z D, Li Y. Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China[J]. Journal of Beijing Forestry University, 2020, 42(3): 54−64. doi: 10.12171/j.1000-1522.20190263
|
[32] |
陈贝贝, 杨浩, 姜俊. 北京平原地区主要造林树种叶片氮磷再吸收及生态化学计量特征[J]. 北京林业大学学报, 2022, 44(7): 8−15. doi: 10.12171/j.1000-1522.20210055
Chen B B, Yang H, Jiang J. Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(7): 8−15. doi: 10.12171/j.1000-1522.20210055
|
[33] |
Minden V, Kleyer M. Internal and external regulation of plant organ stoichiometry[J]. Plant Biology, 2014, 16(5): 897−907. doi: 10.1111/plb.12155
|
[34] |
Rice S K, Westerman B, Federici R. Impacts of the exotic, nitrogen-fixing black locust ( Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem[J]. Plant Ecology, 2004, 174(1): 97−107. doi: 10.1023/B:VEGE.0000046049.21900.5a
|
[35] |
Pilkington M G, Caporn S J, Carroll J A, et al. Effects of increased deposition of atmospheric nitrogen on an upland calluna moor: N and P transformations[J]. Environmental Pollution, 2005, 135(3): 469−480. doi: 10.1016/j.envpol.2004.11.022
|
[36] |
Fan Y X, Zhong X J, Lin F, et al. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots[J]. Geoderma, 2019, 337: 246−255. doi: 10.1016/j.geoderma.2018.09.028
|
[37] |
吴会峰, 任丽娜, 郝文芳, 等. 黄土丘陵区刺槐群落林下物种分布对环境因子的响应[J]. 应用生态学报, 2019, 30(11): 3646−3652.
Wu H F, Ren L N, Hao W F, et al. Response of understory species distribution of Robinia pseudoacacia plantation to environmental factors in loess hilly region, China[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3646−3652.
|
[38] |
Yu Q, Wilcox K, Pierre K L, et al. Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change[J]. Ecology, 2015, 96(9): 2328−2335. doi: 10.1890/14-1897.1
|