• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhou Zhiyong, Xu Mengyao, Wang Yongqiang, Gao Yu, Jia Kuangdi. Evolutionary characteristics of soil quality and organic carbon stability with forest stand age for Pinus tabuliformis forests in the Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 112-119. DOI: 10.12171/j.1000-1522.20220320
Citation: Zhou Zhiyong, Xu Mengyao, Wang Yongqiang, Gao Yu, Jia Kuangdi. Evolutionary characteristics of soil quality and organic carbon stability with forest stand age for Pinus tabuliformis forests in the Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 112-119. DOI: 10.12171/j.1000-1522.20220320

Evolutionary characteristics of soil quality and organic carbon stability with forest stand age for Pinus tabuliformis forests in the Taiyue Mountain of Shanxi Province, northern China

More Information
  • Received Date: August 04, 2022
  • Revised Date: September 27, 2022
  • Accepted Date: September 29, 2022
  • Available Online: September 29, 2022
  • Published Date: October 24, 2022
  •   Objective  The restoration progress of forest ecosystems could be reasonably evaluated by the analyses of variations in soil quality and soil organic carbon (SOC) stability with forest stand age.
      Method  Four forest stands of Pinus tabuliformis at different ages (20 years, 40 years, 80 years and 110 years) were selected to analyze the soil physical quality and SOC stability and their determinants. The soil from these stands were analyzed for SOC fraction, clay content, root biomass and extracellular enzyme activities; soil quality was defined by the ratio of SOC to clay, and the stability of SOC was delineated by the ratio between recalcitrant carbon and labile carbon.
      Result  The biophysical properties, i.e., soil moisture content, soil hydrolase activity, and iron and aluminum oxides were modified along a chronosequence of P. tabuliformis forests. Simultaneously, both of the soil quality and SOC stability increased with forest stand age. During the soil depth of 0 to 10 cm, soil quality increased from 0.12 in the 40 years stand to 0.40 in the 110 years stand, and the SOC stability changed from 2.69 in the 40 years stand to 6.72 in the 110 years stand. A significant and positive correlation was found between soil quality and SOC stability across different forest stands.
      Conclusion  The iron and aluminum oxides contribute more to sustaining the SOC stability, and the soil quality was modified more by soil moisture content, root biomass, and soil extracellular enzyme activities.
  • [1]
    Yu G R, Chen Z, Piao S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asia monsoom region[J]. PNAS, 2014, 111(13): 4910−4915. doi: 10.1073/pnas.1317065111
    [2]
    方精云, 于贵瑞, 任小波, 等. 中国陆地生态系统固碳效应[J]. 中国科学院院刊, 2015, 30(6): 848−857. doi: 10.16418/j.issn.1000-3045.2015.06.019

    Fang J Y, Yu G R, Ren X B, et al. Carbon sequestration in China’s terrestrial ecosystems under climate change[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(6): 848−857. doi: 10.16418/j.issn.1000-3045.2015.06.019
    [3]
    郑姗姗, 蔡丽平, 邹秉章, 等. 森林植被恢复与环境生态因子互作关系研究进展[J]. 生态科学, 2020, 39(5): 227−232.

    Zheng S S, Cai L P, Zou B Z, et al. Research progress on interaction between vegetation restoration and environmental ecological factors[J]. Ecological Science, 2020, 39(5): 227−232.
    [4]
    王芸, 欧阳志云, 郑华, 等. 不同森林恢复方式对我国南方红壤区土壤质量的影响[J]. 应用生态学报, 2012, 24(5): 1335−1340.

    Wang Y, Ouyang Z Y, Zheng H, et al. Effects of different forest restoration approaches on the soil quality in red soil region of Southern China[J]. Chinese Journal of Applied Ecology, 2012, 24(5): 1335−1340.
    [5]
    任启文, 毕君, 李联地, 等. 冀北山地3种森林植被恢复类型对土壤质量的影响[J]. 生态环境学报, 2018, 27(10): 1818−1824.

    Ren Q W, Bi J, Li L D, et al. Effects of three forest vegetation restoration types on soil quality in northern Hebei mountain area[J]. Ecology and Environmental Sciences, 2018, 27(10): 1818−1824.
    [6]
    梁洋, 邵森, 马冰倩. 太岳山油松人工林土壤质量随林龄的演变特征[J]. 浙江农林大学学报, 2019, 36(3): 581−589. doi: 10.11833/j.issn.2095-0756.2019.03.020

    Liang Y, Shao S, Ma B Q. Soil quality development in Pinus tabuliformis plantations with different forest ages on Taiyue Mountain[J]. Journal of Zhejiang A&F University, 2019, 36(3): 581−589. doi: 10.11833/j.issn.2095-0756.2019.03.020
    [7]
    庄正, 张芸, 张颖, 等. 不同发育阶段杉木人工林土壤团聚体分布特征及其稳定性研究[J]. 水土保持学报, 2017, 31(6): 183−188.

    Zhuang Z, Zhang Y, Zhang Y, et al. Study on distribution characteristics and stability of soil aggregate in Chinese fir plantation at different developmental stages[J]. Journal of Soil and Water Conservation, 2017, 31(6): 183−188.
    [8]
    Barthes B, Roose E. Aggregate stability as indicator of soil susceptibility to runoff and erosion: validation at several levels[J]. Catena, 2002, 47: 133−149. doi: 10.1016/S0341-8162(01)00180-1
    [9]
    王冰, 周扬, 张秋良. 兴安落叶松林龄对土壤团聚体分布及其有机碳含量的影响[J]. 生态学杂志, 2021, 40(6): 1618−1628.

    Wang B, Zhou Y, Zhang Q L. Effects of Larix gmelinii stand age on composition and organic carbon content of soil aggregates[J]. Chinese Journal of Ecology, 2021, 40(6): 1618−1628.
    [10]
    郑兴波, 张雪, 韩士杰. 长白山阔叶红松林不同演替阶段土壤团聚体粒径组成及其有机碳含量变化[J]. 应用生态学报, 2019, 30(5): 1553−1560.

    Zheng X B, Zhang X, Han S J. Changes of soil aggregate size composition and organic carbon content at different succession stages of broad-leaved Korean pine forest in Changbai Mountain, China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1553−1560.
    [11]
    Guillaume T, Makowski D, Libohova Z, et al. Soil organic carbon sequestration in cropland-grassland systems: storage potential and soil quality[J]. Geoderma, 2022, 406: 115529. doi: 10.1016/j.geoderma.2021.115529
    [12]
    Prout J M, Sphepherd K D, McGrath S P, et al. What is a good level of soil organic matter? An index based on organic carbon to clay ratio[J]. European Journal of Soil Science, 2021, 72: 2493−2503. doi: 10.1111/ejss.13012
    [13]
    高雨, 赵洪涛, 郭银花, 等. 山西太岳山不同林龄油松林土壤有机碳稳定性的变化特征[J]. 西北农林科技大学学报(自然科学版), 2021, 49(10): 46−55.

    Gao Y, Zhao H T, Guo Y H, et al. Stability of soil organic carbon changed with forest age in Pinus tabuliformis plantations in Mt. Taiyue, Shanxi[J]. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(10): 46−55.
    [14]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. Agrochemistry of soils analytical methods[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [15]
    Barreto P A B, Gama-Rodrigues E F, Gama-Rodrigues A C, et al. Distribution of oxidizable C fractions in soils under cacao agroforestry systems in Southern Bahia, Brazil[J]. Agroforestry Systems, 2011, 81(3): 213−220. doi: 10.1007/s10457-010-9300-4
    [16]
    彭少麟, 陆宏芳. 恢复生态学焦点问题[J]. 生态学报, 2003, 23(7): 1249−1257. doi: 10.3321/j.issn:1000-0933.2003.07.001

    Peng S L, Lu H F. Some key points of restoration ecology[J]. Acta Ecologica Sinica, 2003, 23(7): 1249−1257. doi: 10.3321/j.issn:1000-0933.2003.07.001
    [17]
    范秀华, 张宝权, 范春雨. 长白山典型天然林不同演替阶段物种多样性和结构多样性对生产力影响[J]. 北京林业大学学报, 2021, 43(12): 1−8. doi: 10.12171/j.1000-1522.20210071

    Fan X H, Zhang B Q, Fan C Y. Effects of species diversity and structural diversity on productivity in different succession stages of typical natural forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(12): 1−8. doi: 10.12171/j.1000-1522.20210071
    [18]
    王霞, 胡海波, 张世豪, 等. 不同林龄麻栎林地下部分生物量与碳储量研究[J]. 生态学报, 2019, 39(22): 8556−8564.

    Wang X, Hu H B, Zhang S H, et al. Underground biomass and carbon storage for Quercus acutissima forests of different ages[J]. Acta Ecologica Sinica, 2019, 39(22): 8556−8564.
    [19]
    余敏, 周志勇, 康峰峰, 等. 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释[J]. 植物生态学报, 2013, 37(5): 373−383. doi: 10.3724/SP.J.1258.2013.00373

    Yu M, Zhou Z Y, Kang F F, et al. Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China[J]. Chinese Journal of Plant Ecology, 2013, 37(5): 373−383. doi: 10.3724/SP.J.1258.2013.00373
    [20]
    朱万泽, 盛哲良, 舒树淼. 川西亚高山次生林恢复过程中土壤物理性质及水源涵养效应[J]. 水土保持学报, 2019, 33(6): 205−212.

    Zhu W Z, Sheng Z L, Shu S M. Soil physical properties and water holding capacity of natural secondary forests in a sub-alpine region of Western Sichuan, China[J]. Journal of Soil and Water Conservation, 2019, 33(6): 205−212.
    [21]
    何露露, 强薇, 张燕, 等. 川西亚高山针叶林次生演替对土壤持水量的影响[J]. 应用与环境生物学报, 2021, 27(3): 639−647. doi: 10.19675/j.cnki.1006-687x.2020.08026

    He L L, Qiang W, Zhang Y, et al. Effect of secondary succession on soil water holding capacity of subalpine coniferous forest in western Sichuan, China[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(3): 639−647. doi: 10.19675/j.cnki.1006-687x.2020.08026
    [22]
    薛萐, 刘国彬, 戴全厚, 等. 黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变[J]. 应用生态学报, 2008, 19(3): 517−523. doi: 10.13287/j.1001-9332.2008.0141

    Xue S, Liu G B, Dai Q H, et al. Dynamic changes of soil microbial biomass in the restoration process of shrub plantations in loess hilly area[J]. Chinese Journal of Applied Ecology, 2008, 19(3): 517−523. doi: 10.13287/j.1001-9332.2008.0141
    [23]
    王梅, 晏梓然, 赵子文, 等. 黄土高原植被演替过程中相对土壤酶活性的变化特征[J]. 水土保持学报, 2021, 35(5): 181−187. doi: 10.13870/j.cnki.stbcxb.2021.05.025

    Wang M, Yan Z R, Zhao Z W, et al. Variation characteristics of specific soil enzyme activities during vegetation succession on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2021, 35(5): 181−187. doi: 10.13870/j.cnki.stbcxb.2021.05.025
    [24]
    谭文峰, 周素珍, 刘凡, 等. 土壤中铁铝氧化物与黏土矿物交互作用的研究进展[J]. 土壤, 2007, 39(5): 726−730.

    Tan W F, Zhou S Z, Liu F, et al. Advancement in the study on interactions between iron-aluminum (hydro-) oxides and clay minerals in soil[J]. Soils, 2007, 39(5): 726−730.
    [25]
    陈红, 马文明, 周青平, 等. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73−84. doi: 10.11686/cyxb2020065

    Chen H, Ma W M, Zhou Q P, et al. Shrub encroachment effects on the stability of soil aggregates and the differentiation of Fe and Al oxides in Qinghai-Tibet alpine grassland[J]. Acta Prataculturae Sinica, 2020, 29(9): 73−84. doi: 10.11686/cyxb2020065
    [26]
    吴敏敏, 刘俊第, 林雪萍, 等. 植被恢复对红壤侵蚀区土壤铁铝氧化物和理化性质的影响[J]. 福建农林大学学报(自然科学版), 2020, 49(3): 386−391. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2020.03.016

    Wu M M, Liu J D, Lin X P, et al. Effects of vegetation restoration on soil iron-aluminum oxides and physical and chemical properties in the eroded red soil area[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(3): 386−391. doi: 10.13323/j.cnki.j.fafu(nat.sci.).2020.03.016
    [27]
    李静鹏, 徐明锋, 苏志尧, 等. 不同植被恢复类型的土壤肥力质量评价[J]. 生态学报, 2014, 34(9): 2297−2307.

    Li J P, Xu M F, Su Z Y, et al. Soil fertility quality assessment under different vegetation restoration patterns[J]. Acta Ecologica Sinica, 2014, 34(9): 2297−2307.
    [28]
    Johannes A, Matter A, Schulin R, et al. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?[J]. Geoderma, 2017, 302: 14−21. doi: 10.1016/j.geoderma.2017.04.021
    [29]
    Tamura M, Suseela V, Simpson M, et al. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems[J]. Global Change Biology, 2017, 23: 4002−4018. doi: 10.1111/gcb.13751
    [30]
    Goldberg S. Interaction of aluminum and iron oxides and clay minerals and their effect on soil physical properties: a review[J]. Communications in Soil Science and Plant Analysis, 1989, 11−12: 1181−1207.
  • Related Articles

    [1]Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188
    [2]Li Bingyi, Liu Guanhong, Gu Ze, Li Weike, Tian Ye, Wang Bo, Liu Xiaodong, Shu Lifu. Characteristics of soil nitrogen change in the burned area of Pinus tabuliformis forest in Pingquan County, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 1-10. DOI: 10.12171/j.1000-1522.20220007
    [3]Cai Mengke, Han Hairong, Cheng Xiaoqin, Jing Hongyuan, Liu Li, Peng Xinhao, Shang Tianxiong. Characteristics of soil microbial community structure with different plantation ages in larch forest in Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 86-93. DOI: 10.12171/j.1000-1522.20210132
    [4]Wang Anning, Liu Gechang, Xu Xuehua, Li Xiaogang, Li Yuling. Evaluation of soil quality in iron tailing ore wastelands of various reclamation periods[J]. Journal of Beijing Forestry University, 2020, 42(1): 104-113. DOI: 10.12171/j.1000-1522.20180240
    [5]Xiang Yunxi, Pan Ping, Chen Shengkui, Ouyang Xunzhi, Ning Jinkui, Wu Zirong, Ji Renzhan. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95-103. DOI: 10.13332/j.1000-1522.20190029
    [6]Liu Guanhong, Li Bingyi, Gong Dapeng, Li Weike, Liu Xiaodong. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 29-40. DOI: 10.13332/j.1000-1522.20180339
    [7]WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
    [8]LI Hong-xiang, WANG Bin, WANG Yu-jie, WANG Yun-qi. Impact of different forest types on stability and organic carbon of soil aggregates[J]. Journal of Beijing Forestry University, 2016, 38(5): 84-91. DOI: 10.13332/j.1000-1522.20150427
    [9]DUAN Qiong-fen, , MA Li-yi, YU Jian-xing, ZHANG Zhong-quan, WANG You-qiong, AN Xin-nan. Anti-oxidation stability of moringa oil.[J]. Journal of Beijing Forestry University, 2009, 31(6): 112-115.
    [10]GENG Yu-qing, DAI Wei, YU Xin-xiao, CHEN Jun-qi. Research advances for the effects of forest management on soil enzyme activity. [J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 132-138.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views (695) PDF downloads (101) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return