• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Huang Qiannan, Zhang Xiaoming, Wei Jie, Zhang Ziyou, Hu Jie. Effects of mixing sand on unconfined compressive strength of soil in collapsing gully[J]. Journal of Beijing Forestry University, 2020, 42(1): 114-120. DOI: 10.12171/j.1000-1522.20180235
Citation: Huang Qiannan, Zhang Xiaoming, Wei Jie, Zhang Ziyou, Hu Jie. Effects of mixing sand on unconfined compressive strength of soil in collapsing gully[J]. Journal of Beijing Forestry University, 2020, 42(1): 114-120. DOI: 10.12171/j.1000-1522.20180235

Effects of mixing sand on unconfined compressive strength of soil in collapsing gully

More Information
  • Received Date: July 18, 2018
  • Revised Date: December 13, 2018
  • Available Online: November 05, 2019
  • Published Date: January 13, 2020
  • ObjectiveIn order to study the mechanics characteristic of colluvial deposits of collapsing gully, soil simulation of the collapsing had been made and the unconfined compressive strength was measured.
    MethodTwo methods to mix the sand and soil and different sand content were taken.
    ResultThe results showed that unconfined compressive strength reducted along with the reduction of sand content because of the lesser axial stress. From 0% to 100% of sand content, unconfined compressive strength reduction from 71.1 kPa to 14.6 kPa. The specimen mixed sand to soil with separated layer destroyed seriously and the strength was smaller result to the unstable substratum. The highest strength occurred to the specimen which was low sand content and mixed uniformly.
    ConclusionMixing sand dramatically reduces the unconfined compressive strength of soil in collapsing gully. Under the same sand content circumstances, specimen mixed uniformly has a high strength and brittle failure at the end of test.
  • [1]
    丘世均. 红土坡地崩岗侵蚀过程与机理[J]. 水土保持通报, 1996, 14(6):31−40.

    Qiu S J. The process and mechanism of red earth slope disintegration erosion[J]. Bulletin of Soil and Water Conservation, 1996, 14(6): 31−40.
    [2]
    冯明汉, 廖纯艳, 李双喜, 等. 我国南方崩岗侵蚀现状调查[J]. 人民长江, 2009, 40(8):66−68. doi: 10.3969/j.issn.1001-4179.2009.08.018

    Feng M H, Liao C Y, Li S X, et al. Investigation on status of hill collapsing and soil erosion in southern China[J]. Yangtze River, 2009, 40(8): 66−68. doi: 10.3969/j.issn.1001-4179.2009.08.018
    [3]
    Lin J, Huang Y, Wang M, et al. Assessing the sources of sediment transported in gully systems using a fingerprinting approach: an example from southeast China[J]. Catena, 2015, 129: 9−17. doi: 10.1016/j.catena.2015.02.012
    [4]
    阮伏水. 福建崩岗沟侵蚀机理探讨[J]. 福建师范大学学报(自然科学版), 1996, 12(增刊):24−31.

    Ruan F S. Study on erosion mechanism of collapse gully in Fujian[J]. Journal of Fujian Teachers University (Natural Science), 1996, 12(Suppl.): 24−31.
    [5]
    张晓明, 丁树文, 蔡崇法. 干湿效应下崩岗区岩土抗剪强度衰减非线性分析[J]. 农业工程学报, 2012, 28(5):241−245. doi: 10.3969/j.issn.1002-6819.2012.05.040

    Zhang X M, Ding S W, Cai C F. Effects of drying and wetting on nonlinear decay of soil shear strength in slope disintegration erosion area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 241−245. doi: 10.3969/j.issn.1002-6819.2012.05.040
    [6]
    黄辉. 红粘土无侧限抗压强度试验影响因素研究[J]. 湖南工业大学学报, 2010, 24(4):23−26.

    Huang H. Study on influencing factors of unconfined compressive strength of red clay[J]. Journal of Hunan University of Technology, 2010, 24(4): 23−26.
    [7]
    Fei T, Jian-Hua Y. Nonlinear creep and swelling behavior of bentonite mixed with different sand contents under oedometric condition[J]. Marine Georesources & Geotechnology, 2011, 29(4): 346−363.
    [8]
    蔡正银, 吴志强, 黄英豪, 等. 含水率和含盐量对冻土无侧限抗压强度影响的实验研究[J]. 岩土工程学报, 2014, 36(9):1581−1586.

    Cai Z Y, Wu Z Q, Huang Y H, et al. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1581−1586.
    [9]
    杨俊, 杨志, 张国栋, 等. 初始干密度及掺砂比对膨胀土抗剪强度指标影响[J]. 地下空间与工程学报, 2015, 11(1):77−83.

    Yang J, Yang Z, Zhang G D, et al. The influence of initial dry density and doped sand proportion on expansive soil shear strength[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(1): 77−83.
    [10]
    Huang R Q. Deformation mechanism and stability of a rocky slope[J]. Journal of China University of Geosciences, 2007, 18(1): 77−84. doi: 10.1016/S1002-0705(07)60021-1
    [11]
    卫杰, 张晓明, 丁树文, 等. 黄麻纤维加筋条件对崩岗岩土无侧限抗压强度的影响[J]. 水土保持学报, 2015, 29(6):59−63.

    Wei J, Zhang X M, Ding S W, et al. Effect of reinforcement conditions of jute fiber on unconfined compressive strength of soil in collapsing hill[J]. Journal of Soil and Water Conservation, 2015, 29(6): 59−63.
    [12]
    杨彩迪, 卫杰, 张晓明, 等. 黄麻纤维加筋崩岗岩土的无侧限抗压强度研究[J]. 土壤学报, 2018, 55(4):143−152.

    Yang C D, Wei J, Zhang X M, et al. Unconfined compressive strength of jute-fiber-fortified collapsing hill soil[J]. Acta Pedologica Sinica, 2018, 55(4): 143−152.
    [13]
    GB/T 50123-1999. 土工试验方法标准[S]. 北京: 中国计划出版社, 1999.

    GB/T 50123-1999. Standard for soil test method[S]. Beijing: China Planning Press, 1999.
    [14]
    蒋芳市, 黄炎和, 林金石, 等. 花岗岩崩岗崩积体颗粒组成及分形特征[J]. 水土保持研究, 2014, 21(6):175−180.

    Jiang F S, Huang Y H, Lin J S, et al. Soil particle size distribution and fractal dimensions of colluvial deposits in granite benggang[J]. Research of Soil and Water Conservation, 2014, 21(6): 175−180.
    [15]
    刘霖, 魏中曹, 范振祥. 水泥固话煤化工废水污染土的应力: 应变特性及空隙结构研究[J]. 内蒙古农业大学学报(自然科学版), 2017, 38(5):51−56.

    Liu L, Wei Z C, Fan Z X. Study on stress-strain characteristics and pore structure of polluted soil in cement, cured coal chemical waste water[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2017, 38(5): 51−56.
    [16]
    杨俊, 刘子豪, 张国栋, 等. 复合方法改良膨胀土无侧限抗压强度试验研究[J]. 地下空间与工程学报, 2016, 12(4):1069−1076.

    Yang J, Liu Z H, Zhang G D, et al. Experimental research on unconfined compressive strength of expansive soil improved by composite method[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(4): 1069−1076.
    [17]
    Hucka V, Das B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1974, 11(10): 389−392. doi: 10.1016/0148-9062(74)91109-7
    [18]
    周辉, 孟凡震, 张传庆, 等. 基于应力:应变曲线的岩石脆性特征定量评价方法[J]. 岩石力学与工程学报, 2014, 33(6):1114−1122.

    Zhou H, Meng F Z, Zhang C Q, et al. Quantitative evaluation of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1114−1122.
    [19]
    石崇喜, 黄英, 杨玉婷, 等. 掺砂红土的力学特性及掺砂机理研究[J]. 工程勘察, 2011(4):1−8.

    Shi C X, Hang Y, Yang Y T, et al. Research on mechanical properties and sand-doped mechanism of the laterite improved with sand[J]. Journal of Investigation & Surveying, 2011(4): 1−8.
    [20]
    詹振芝, 黄炎和, 蒋芳市, 等. 砾石含量及粒径对崩岗崩积体渗透特性的影响[J]. 水土保持学报, 2017, 31(3):85−95.

    Zhan Z Z, Huang Y H, Jiang F S, et al. Effects of content and size of gravel on soil permeability of the colluvial deposit in benggang[J]. Journal of Soil and Water Conservation, 2017, 31(3): 85−95.
    [21]
    杨俊, 童磊, 张国栋, 等. 干湿循环对风化砂改良膨胀土无侧限抗压强度的影响[J]. 武汉大学学报(工学版), 2014, 47(4):532−536, 556.

    Yang J, Tong L, Zhang G D, et al. Wet and dry cycle effects on unconfined compressive strength of weathered sand improved expansive soil[J]. Engineering Journal of Wuhan University, 2014, 47(4): 532−536, 556.
    [22]
    刘希林, 张大林, 贾瑶瑶. 崩岗地貌发育的土体物理性质及其土壤侵蚀意义: 以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2013, 28(7):802−811. doi: 10.11867/j.issn.1001-8166.2013.07.0802

    Liu X L, Zhang D L, Jia Y Y. Soil physical properties of collapsing hill and gully and their indications for soil erosion: an example of Liantanggang collapsing hill and gully in Wuhua County of Guangdong[J]. Advances in Earth Science, 2013, 28(7): 802−811. doi: 10.11867/j.issn.1001-8166.2013.07.0802
    [23]
    刘希林, 唐川, 张大林. 野外模拟崩岗崩积体坡面产流过程及水分分布[J]. 农业工程学报, 2015, 31(11):179−185. doi: 10.11975/j.issn.1002-6819.2015.11.026

    Liu X L, Tang C, Zhang D L. Simulated runoff processes on colluvial deposits of Liantanggang Benggang and their water distributions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 179−185. doi: 10.11975/j.issn.1002-6819.2015.11.026
  • Related Articles

    [1]Cui Tingting, Zhu Liying, Zhang Litian, Ye Yongxiang, Lin Qinlan, Yan Minlong. Analysis of spatial vitality characteristics and influencing factors of Wuyi Mountain National Park from online and offline perspectives[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240278
    [2]Yu Xiao, Ouyang Xunzhi, Pan Ping, Deng Wenping, Peng Songli, Zang Hao, Hu Rongrong. Spatial structure characteristics and its evaluation of evergreen broadleaved forest at different growth stages in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(12): 32-40. DOI: 10.12171/j.1000-1522.20210450
    [3]Sun Qiaoyun, Bao Menghan, Huang Hanwen, Zhang Yujun. Boundary delimitation of the proposed Songnen Plain National Park of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(1): 103-112. DOI: 10.12171/j.1000-1522.20210418
    [4]Tang Weilu, Jin Kun. Preliminary study on night lodging habitat selection of Nomascus hainanus in Hainan Tropical Rainforest National Park, southern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 113-126. DOI: 10.12171/j.1000-1522.20200185
    [5]YU Jia-lin, ZHANG Wei-guo, TIAN Kun, SONG Wei-hong, LI Qiu-ping, YANG Rong, ZHANG Yun. Response of radial growth of three conifer trees to climate change at their upper distribution limits in Potatso National Park, Shangri-La, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 43-51. DOI: 10.13332/j.1000-1522.20160184
    [6]ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087
    [7]WANG Yong, QIAO Yong, SUN Xiang-yang. Soil taxonomy in Jiufeng National Forest Park, Beijing[J]. Journal of Beijing Forestry University, 2010, 32(3): 217-220.
    [8]CUI Li-juan, ZHANG Man-yin, LI Wei, WANG Yi-fei, SHANG Xiao-jing.. Management and assessment of national wetland parks.[J]. Journal of Beijing Forestry University, 2009, 31(5): 102-107.
    [9]SHI Qiang, HE Qing-tang. The best tourism environmental capacity of Zhangjiajie National Forest Park, southern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 143-147. DOI: 10.13332/j.1000-1522.2007.04.029
    [10]WANG Qing-kui, WANG Si-long, FENG Zong-wei. Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(5): 1-6.
  • Cited by

    Periodical cited type(36)

    1. 张瑜,徐子棋,陈光明,张志军,杨献坤,崔斌,王大中,芦贵君. 不同林草治沙模式对盐碱沙地沉积物粒度特征的影响. 中国水土保持. 2024(03): 29-33 .
    2. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    3. 董鹏,任悦,高广磊,丁国栋,张英. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征. 干旱区研究. 2024(08): 1354-1363 .
    4. 包润泽,张星,姚庆智. 接种褐环乳牛肝菌对樟子松及油松根际土壤细菌群落的影响. 安徽农业科学. 2023(06): 148-151+162 .
    5. 拓卫卫,范家伟,周雅洁,杨京,张延文,佟小刚,吴发启,姚冲. 毛乌素沙地樟子松林植物-土壤生态化学计量特征演变关系. 水土保持研究. 2023(06): 177-186 .
    6. 刘明慧,柳叶,任悦,高广磊,丁国栋,张英,赵珮杉,刘轩. 科尔沁沙地樟子松人工林土壤真菌共现网络及其与土壤因子的关系. 生态学报. 2023(23): 9912-9924 .
    7. 邹星晨,王欣苗,左亚凡,张泽鑫,贺康宁. 青海云杉不同演替阶段林下草本多样性特征及其环境解释. 生态学报. 2023(24): 10285-10294 .
    8. 阿拉萨,王陇,高广磊,张英,曹红雨,杜宇佳,刘雪锋. 乌兰布和沙漠沿黄段风沙土有机质和碳酸钙含量特征. 中国水土保持科学(中英文). 2022(01): 41-47 .
    9. 刘轩,赵珮杉,高广磊,赵媛媛,丁国栋,糜万林. 沙地樟子松(Pinus sylvestris var. mongolica)物候特征及其对气候的响应. 中国沙漠. 2022(02): 25-35 .
    10. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    11. 阿拉萨,高广磊,丁国栋,张英,曹红雨,杜宇佳. 土壤微生物膜生理生态功能研究进展. 应用生态学报. 2022(07): 1885-1892 .
    12. 王辉丽,于树学,郭立,梁海龙,李伟. 樟子松优树群体遗传多样性评价及指纹图谱构建. 甘肃农业大学学报. 2022(03): 103-110 .
    13. 王学林,高广磊,丁国栋,曹红雨. 沙地樟子松人工林土壤酶活性研究. 干旱区资源与环境. 2021(01): 114-120 .
    14. 徐畅,雷泽勇,周凤艳,毛禹. 沙地樟子松人工林生长对非降雨季节土壤水分的影响. 生态学杂志. 2021(01): 58-66 .
    15. 曹怡立. 章古台沙地樟子松人工林衰退的原因以及可持续经营措施. 农业与技术. 2021(03): 75-77 .
    16. 韦睿,罗玉亮,兰岚,于宏影,裴晓娜,刘亭亭. 截顶及遗传因素对樟子松无性系种子园种实差异的影响. 温带林业研究. 2021(02): 32-37 .
    17. 王雨,郭米山,高广磊,曹红雨,丁国栋,梁海军,赵珮杉. 三种外生菌根真菌对沙地樟子松幼苗生长的影响. 干旱区资源与环境. 2021(10): 135-140 .
    18. 李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应. 干旱区研究. 2021(06): 1704-1712 .
    19. 黄艳章,信忠保. 不同生态恢复模式对黄土残塬沟壑区深层土壤有机碳的影响. 生态学报. 2020(03): 778-788 .
    20. 王一佩,孙美美,程然然,关晋宏,李国庆,杜盛. 黄土高原中西部人工针叶林浅层土壤有机碳积累及影响因素. 水土保持研究. 2020(03): 30-36 .
    21. 林雅超,高广磊,丁国栋,王学林,魏晓帅,王陇. 沙地樟子松人工林土壤理化性质与微生物生物量的动态变化. 生态学杂志. 2020(05): 1445-1454 .
    22. 白晓霞,艾海舰. 榆林沙地樟子松人工林土壤养分变化特征. 西部林业科学. 2020(03): 80-85 .
    23. 周磊,吴慧,王树力. 不同林分红皮云杉针叶养分含量及生态化学计量特征研究. 植物资源与环境学报. 2020(03): 19-25+33 .
    24. 白晓霞,鱼慧利,张静,艾海舰. 榆林沙地樟子松人工林可持续经营措施研究. 榆林学院学报. 2020(04): 46-49 .
    25. 魏晓帅,郭米山,高广磊,任悦,丁国栋,张英. 呼伦贝尔沙地樟子松根内真菌群落结构与功能群特征. 北京大学学报(自然科学版). 2020(04): 710-720 .
    26. 赵珮杉,郭米山,高广磊,丁国栋,张英. 科尔沁沙地樟子松根内真菌群落结构和功能群特征. 林业科学. 2020(09): 87-96 .
    27. 李佳文,赵珮杉,高广磊,任悦,丁国栋,张英,郭米山,魏晓帅. 陕西榆林沙区樟子松根内真菌群落结构和功能群特征. 菌物学报. 2020(10): 1854-1865 .
    28. 王家源,殷小琳,任悦,高广磊,丁国栋,张英,赵珮杉,郭米山. 毛乌素沙地樟子松外生菌根真菌多样性特征. 微生物学通报. 2020(11): 3856-3867 .
    29. 任悦,高广磊,丁国栋,张英,郭米山,曹红雨,苏敏. 沙地樟子松人工林叶片-枯落物-土壤氮磷化学计量特征. 应用生态学报. 2019(03): 743-750 .
    30. 曲杭峰,董希斌,佘光宇,杨兰,何山. 大兴安岭蒙古栎天然次生林不同改培模式对枯落物持水性的影响. 温带林业研究. 2019(01): 31-38 .
    31. 陈宇轩,丁国栋,高广磊,张英,赵洋,王陇. 呼伦贝尔沙地风沙土有机质和碳酸钙含量特征. 中国水土保持科学. 2019(04): 104-111 .
    32. 张宁宁,谭凯亮,亢福仁,刘普灵. 毛乌素沙地樟子松林恢复过程的土壤有机质含量变化特征. 水土保持研究. 2019(05): 95-99 .
    33. 阎雄飞,曹存宏,袁小琴,张增强,郭荣,陈巧燕,刘永华. 截冠处理对种子园樟子松壮龄母树结实的影响. 北京林业大学学报. 2019(08): 48-56 . 本站查看
    34. 曹红雨,高广磊,丁国栋,张英,赵媛媛,任悦,陈宇轩,郭米山. 呼伦贝尔沙区4种生境土壤真菌群落结构和多样性. 林业科学. 2019(08): 118-127 .
    35. 阎雄飞,刘永华,冯永宏,张增强,袁小琴,陈巧燕,郭荣,曹存宏,杨涛. 2种截冠处理对种子园樟子松幼龄母树生长的影响. 农学学报. 2019(10): 42-47 .
    36. 王树力,郝玉琢,周磊,吴慧. 水曲柳人工林树木叶片营养元素及其化学计量特征的季节动态. 北京林业大学学报. 2018(10): 24-33 . 本站查看

    Other cited types(22)

Catalog

    Article views (2154) PDF downloads (39) Cited by(58)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return