Citation: | Zheng Dongmei, Wang Haibin, Xia Chaozong, Chen Jian, Hou Ruiping, Hao Yuelan, An Tianyu. Estimation of above-ground carbon density of arbor forest in Zhejiang Province of southern China based on ZY-3 satellite multispectral image[J]. Journal of Beijing Forestry University, 2020, 42(1): 65-74. DOI: 10.12171/j.1000-1522.20180351 |
[1] |
王海宾, 侯瑞萍, 郑冬梅, 等. 基于地理加权回归模型的亚热带地区乔木林生物量估算[J]. 农业机械学报, 2018, 49(6):184−190. doi: 10.6041/j.issn.1000-1298.2018.06.021
Wang H B, Hou R P, Zheng D M, et al. Biomass estimation of arbor forest in subtropical region based on geographically weighted regression model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 184−190. doi: 10.6041/j.issn.1000-1298.2018.06.021
|
[2] |
Lu D, Chen Q, Wang G, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014, 9(1): 63−105.
|
[3] |
刘茜, 杨乐, 柳钦火, 等. 森林地上生物量遥感反演方法综述[J]. 遥感学报, 2015, 19(1):62−74. doi: 10.11834/jrs.20154108
Liu Q, Yang L, Liu Q H, et al. Review of forest above ground biomass inversion methods based on remote sensing technology[J]. Journal of Remote Sensing, 2015, 19(1): 62−74. doi: 10.11834/jrs.20154108
|
[4] |
Du H Q, Zhou G M, Ge H L, et al. Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique[J]. International Journal of Remote Sensing, 2012, 33(6): 1917−1933. doi: 10.1080/01431161.2011.603379
|
[5] |
王海宾, 彭道黎, 范应龙, 等. 基于辅助信息的森林蓄积量空间模拟[J]. 农业机械学报, 2016, 47(6):283−289. doi: 10.6041/j.issn.1000-1298.2016.06.037
Wang H B, Peng D L, Fan Y L, et al. Spatial modeling of forest stock volume based on auxiliary information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 283−289. doi: 10.6041/j.issn.1000-1298.2016.06.037
|
[6] |
Gleason C J, Im J. A review of remote sensing of forest biomass and biofuel: options for small-area applications[J]. Giscience & Remote Sensing, 2011, 48(2): 141−170.
|
[7] |
戚玉娇. 大兴安岭森林地上碳储量遥感估算与分析[D]. 哈尔滨: 东北林业大学, 2014.
Qi Y J. Estimation of forest above ground carbon storage using remote sensing in Daxing’an Mountains[D]. Harbin: Northeast Forestry University, 2014.
|
[8] |
李德仁. 我国第一颗民用三线阵立体测图卫星:资源三号测绘卫星[J]. 测绘学报, 2012, 41(3):317−322.
Li D R. First civilian three-line-array stereo mapping satellite: ZY-3[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 317−322.
|
[9] |
李芬. 资源三号卫星数据在土地利用遥感监测中的应用研究[D]. 长春: 吉林大学, 2013.
Li F. Application study of ZY-3 satellite data to landuse dynamic monitoring[D]. Changchun: Jinlin University, 2013.
|
[10] |
朱汤军, 沈楚楚, 季碧勇, 等. 基于LULUCF温室气体清单编制的浙江省杉木林生物量换算因子[J]. 生态学报, 2013, 33(13):3925−3932.
Zhu T J, Shen C C, Ji B Y, et al. Research on biomass expansion factor of Chinese fir forest in Zhejiang Province based on LULUCF greenhouse gas inventory[J]. Acta Ecologica Sinica, 2013, 33(13): 3925−3932.
|
[11] |
张煜星, 王祝雄. 遥感技术在森林资源清查中的应用研究[M]. 北京: 中国林业出版社, 2007.
Zhang Y X, Wang Z X. Application research of remote sensing technology in forest resources inventory[M]. Beijing: China Forestry Publishing House, 2007.
|
[12] |
Du P, Xia J, Zhang W, et al. Multiple classifier system for remote sensing image classification: a review[J]. Sensors, 2012, 12(4): 4764−4792. doi: 10.3390/s120404764
|
[13] |
郑刚. 基于KNN法的森林蓄积量的遥感估计和反演[D]. 南京: 南京林业大学, 2009.
Zheng G. Estimation and retrieval of forest volume by remote sensing based on KNN: a case study in Wengyuan County of Guangdong Province[D]. Nanjing: Nanjing Forestry University, 2009.
|
[14] |
邓书斌. ENVI遥感图像处理方法[M]. 北京: 高等教育出版社, 2014.
Deng S B. ENVI remote sensing image processing method[M]. Beijing: Higher Education Press, 2014.
|
[15] |
琚存勇, 邸雪颖, 蔡体久. 变量筛选方法对郁闭度遥感估测模型的影响比较[J]. 林业科学, 2007, 43(12):33−38. doi: 10.3321/j.issn:1001-7488.2007.12.006
Ju C Y, Di X Y, Cai T J. Comparing impact of two selecting variables methods on canopy closure estimation[J]. Scientia Silvae Sinicae, 2007, 43(12): 33−38. doi: 10.3321/j.issn:1001-7488.2007.12.006
|
[16] |
李崇贵, 赵宪文, 李春干. 森林蓄积量遥感估测理论与实现[M]. 北京: 科学出版社, 2006.
Li C G, Zhao X W, Li C G. Theory and realization of estimating forest stock volume by remote sensing[M]. Beijing: Science Press, 2006.
|
[17] |
Chirici G, Mura M, McInerney D, et al. A meta-analysis and review of the literature on the k-nearest neighbors technique for forestry applications that use remotely sensed data[J]. Remote Sensing of Environment, 2016, 176: 282−294. doi: 10.1016/j.rse.2016.02.001
|
[18] |
Gjertsen A K. Accuracy of forest mapping based on Landsat TM data and a kNN-based method[J]. Remote Sensing of Environment, 2007, 110(4): 420−430. doi: 10.1016/j.rse.2006.08.018
|
[19] |
McRoberts R E, Nelson M D, Wendt D G. Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique[J]. Remote Sensing of Environment, 2002, 82(2−3): 457−468. doi: 10.1016/S0034-4257(02)00064-0
|
[20] |
Tomppo E, Katila M. Satellite image-based national forest inventory of finland for publication in the igarss’91 digest[C]//Proceedings of IGARSS’91. Remote sensing: global monitoring for earth management. Helsinki: IEEE, 1991: 1141−1144.
|
[21] |
Tomppo E, Nilsson M, Rosengren M, et al. Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass[J]. Remote Sensing of Environment, 2002, 82(1): 156−171. doi: 10.1016/S0034-4257(02)00031-7
|
[22] |
郑刚, 彭世揆, 戎慧, 等. 基于KNN方法的森林蓄积量遥感估计和反演概述[J]. 遥感技术与应用, 2010, 25(3):430−437. doi: 10.11873/j.issn.1004-0323.2010.3.430
Zheng G, Peng S K, Rong H, et al. A general introduction to estimation and retrieval of forest volume with remote sensing based on KNN[J]. Remote Sensing Technology and Application, 2010, 25(3): 430−437. doi: 10.11873/j.issn.1004-0323.2010.3.430
|
[23] |
刘俊, 毕华兴, 朱沛林, 等. 基于ALOS遥感数据纹理及纹理指数的柞树蓄积量估测[J]. 农业机械学报, 2014, 45(7):245−254. doi: 10.6041/j.issn.1000-1298.2014.07.038
Liu J, Bi H X, Zhu P L, et al. Estimating stand volume of Xylosma racemosum forest based on texture parameters and derivative texture indices of ALOS imagery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 245−254. doi: 10.6041/j.issn.1000-1298.2014.07.038
|
[24] |
Beguet B, Guyon D, Boukir S, et al. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96: 164−178. doi: 10.1016/j.isprsjprs.2014.07.008
|
[25] |
Eckert S. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(4): 810−829. doi: 10.3390/rs4040810
|
[26] |
Jin X L, Ma J H, Wen Z D, et al. Estimation of maize residue cover using Landsat-8 OLI image spectral information and textural features[J]. Remote Sensing, 2015, 7(11): 14559−14575. doi: 10.3390/rs71114559
|
[27] |
Meng J H, Li S M, Wang W, et al. Estimation of forest structural diversity using the spectral and textural information derived from SPOT-5 satellite images[J]. Remote Sensing, 2016, 8(2): 125−148. doi: 10.3390/rs8020125
|