• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374
Citation: LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374

Biomass allocation patterns and allometric models of Ginkgo biloba

More Information
  • Received Date: November 15, 2016
  • Revised Date: February 20, 2017
  • Published Date: March 31, 2017
  • Based on the Ginkgo biloba plantation in northern area of Jiangsu Province, eastern China, 13 sample trees with different diameters at breast height (DBH) were selected, and used to analyze the relationships between above- and below-ground biomass and their allocation patterns. At the individual tree level, allometric models for each component biomass were developed based on independent variables of DBH, tree height (H), D2H and DaHb. The best fitting models were identified by the fitting and test results of parameter estimation, the statistical parameters used in this paper were adjusted determination coefficient (Radj2), sum of squares for error (SSE), statistics estimating the standard deviation SEE, mean relative deviation (ME), mean relative deviation absolute (MAE), mean estimated error (MPE). The results showed that the whole variation range for plant biomass of the 13 ginkgo trees was 28.50-320.27 kg for each tree. Relative proportions of stem, branch, leaf, and root to total tree biomass were 49.4%-56.6%, 12.1%-18.9%, 3.8%-5.5%, and 26%, respectively. The aboveground biomass was significantly linearly correlated with belowground biomass. The slope of the fitted linear model was 0.35. Results showed that the majority leaf and branch biomass occurred in the middle canopy layers, with significant difference between the middle, upper and lower layers in combined biomass of leaves and branches, and there was no significance between upper and lower layers. For all sample trees, about 70% of roots were observed in the 0-1.0 m soil layer. With soil depth increasing, the root biomass decreased exponentially. At branch level, allometric models based on two variables (i.e. BD and BL) of branch biomass explained more than 95% of the variations in data. The results showed that D was a best independent variable in estimating the biomass of leaf, branch, aboveground section than the rest variables, and D-H was the best in estimating stem, root and total tree biomass. The mean value of proportion of different biomass components showed an order of stem > root > branch > leaf. The middle canopy layers occupied the maximum ratio in vertical and horizontal distribution of branch and leaf biomass, and these results were in consistence with the isometric biomass allocation theory. Allometric models based on independent variables of DBH, and H would be suitable for predicting the above- and below-ground component biomass of ginkgo, and the calculation of ginkgo biomass and carbon storage.
  • [1]
    OLSON J S, WATTS J A, ALLISON L J. Carbon in live vegetation of major world ecosystems[R]. 1983.
    [2]
    方精云, 刘国华, 徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报, 1996, 16(5): 497-508. http://www.cqvip.com/Main/Detail.aspx?id=2354606

    FANG J Y, LIU G H, XU S L. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 1996, 16(5): 497-508. http://www.cqvip.com/Main/Detail.aspx?id=2354606
    [3]
    国家林业局.第八次全国森林资源清查结果[J].林业资源管理, 2014(1): 1-2. http://d.old.wanfangdata.com.cn/Periodical/lyzygl201401001

    State Forestry Administration. The 8th national forestry inventory results[J]. Forest Resources Management, 2014(1): 1-2. http://d.old.wanfangdata.com.cn/Periodical/lyzygl201401001
    [4]
    冯宗炜.中国森林生态系统的生物量和生产力[M].北京:科学出版社, 1999: 191-196.

    FENG Z W. Biomass and primary productivity of forest ecosystems in China[M]. Beijing: Science Press, 1999: 191-196.
    [5]
    FANG J Y, WANG Z M. Forest biomass estimation at regional and global levels, with special reference to China's forest biomass[J]. Ecological Research, 2001, 16(3): 587-592. doi: 10.1046/j.1440-1703.2001.00419.x
    [6]
    罗云建, 张小全, 王效科, 等.森林生物量的估算方法及其研究进展[J].林业科学, 2009, 45(8): 129-134. doi: 10.3321/j.issn:1001-7488.2009.08.023

    LUO Y J, ZHANG X Q, WANG X K, et al. Forest biomass estimation methods and their prospects[J]. Scientia Silvae Sinicae, 2009, 45(8): 129-134. doi: 10.3321/j.issn:1001-7488.2009.08.023
    [7]
    潘维俦, 李利村, 高正衡, 等.杉木人工林生态系统中的生物产量及其生产力的研究[J].湖南林业科技, 1978 (5): 2-14. http://www.cnki.com.cn/Article/CJFD1979-HLKJ197805000.htm

    PAN W S, LI L C, GAO Z H, et al. Study on biomass and productivity in ecology system of China fir plantation[J]. Hunan Forestry Science and Technology, 1978 (5): 2-14. http://www.cnki.com.cn/Article/CJFD1979-HLKJ197805000.htm
    [8]
    冯宗炜, 陈楚莹, 张家武, 等.湖南会同地区马尾松林生物量的测定[J].林业科学, 1982, 18(2): 127-134. http://www.cnki.com.cn/Article/CJFDTotal-LYKE198202002.htm

    FENG Z W, CHEN C Y, ZHANG J W, et al. Determination of biomass of Pinus massoniana stand in Huitong County, Hunan Province[J]. Scientia Silvae Sinicae, 1982, 18(2): 127-134. http://www.cnki.com.cn/Article/CJFDTotal-LYKE198202002.htm
    [9]
    李文华.小兴安岭谷地云冷杉林群落结构和演替的研究[J].资源科学, 1980, 2(4): 17-29. http://www.cnki.com.cn/Article/CJFDTotal-ZRZY198004002.htm

    LI W H. Community structure and succession of valley spruce-fir forest in Xiaoxing'an Mountains, China[J]. Natural Resources, 1980, 2(4): 17-29. http://www.cnki.com.cn/Article/CJFDTotal-ZRZY198004002.htm
    [10]
    李意德, 曾庆波, 吴仲民, 等.尖峰岭热带山地雨林生物量的初步研究[J].植物生态学与地植物学学报, 1992, 16(4): 293-300. http://www.cnki.com.cn/Article/CJFDTotal-ZWSB199204000.htm

    LI Y D, ZENG Q B, WU Z M, et al. Study on biomass of tropical mountain rain forest in Jianfengling, Hainan Province[J]. Chinese Journal of Plant Ecology, 1992, 16(4): 293-300. http://www.cnki.com.cn/Article/CJFDTotal-ZWSB199204000.htm
    [11]
    张志, 田昕, 陈尔学, 等.森林地上生物量估测方法研究综述[J].北京林业大学学报, 2011, 33(5): 144-150. http://j.bjfu.edu.cn/article/id/9663

    ZHANG Z, TIAN X, CHEN E X, et al. Review of methods on estimating forest aboveground biomass[J]. Journal of Beijing Forestry University, 2011, 33(5): 144-150. http://j.bjfu.edu.cn/article/id/9663
    [12]
    CHUNG S Y, YIM J S, CHO H K, et al. Comparison of forest biomass estimation methods by combining satellite data and field data[J/OL]. Proceedings of IUFRO Division, 2009, 4[2016-08-02]. https://www.researchgate.net/publication/237334259.
    [13]
    王维枫, 雷渊才, 王雪峰, 等.森林生物量模型综述[J].西北林学院学报, 2008, 23(2): 58-63. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb200802014

    WANG W F, LEI Y C, WANG X F, et al. A review of forest biomass models[J]. Journal of Northwest Forestry University, 2008, 23(2): 58-63. http://d.old.wanfangdata.com.cn/Periodical/xblxyxb200802014
    [14]
    唐守正, 张会儒, 胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学, 2000, 36(增刊1): 19-27. http://d.old.wanfangdata.com.cn/Periodical/lykx2000Z1003

    TANG S Z, ZHANG H R, XU H. Study on establish and estimate method of compatible biomass model[J]. Scientia Silvae Sinicae, 2000, 36(Suppl. 1): 19-27. http://d.old.wanfangdata.com.cn/Periodical/lykx2000Z1003
    [15]
    CHAVE J, ANDALO C, BROWN S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145(1): 712-735. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=687e13a4f79ffd6b30216f5e3963cd74
    [16]
    曾伟生, 唐守正.一个新的通用性相对生长生物量模型[J].林业科学, 2012, 48(1): 48-52. http://d.old.wanfangdata.com.cn/Periodical/lykx201201009

    ZENG W S, TANG S Z. A new general biomass allometric model[J]. Scientia Silvae Sinicae, 2012, 48(1): 48-52. http://d.old.wanfangdata.com.cn/Periodical/lykx201201009
    [17]
    罗天祥.中国主要森林类型生物生产力格局及其数学模型[D].北京: 中国科学院研究生院, 1996. http://cdmd.cnki.com.cn/Article/CDMD-80061-2006113572.htm

    LUO T X. Patterns of net primary productivity for Chinese major forest types and their mathematical models[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 1996. http://cdmd.cnki.com.cn/Article/CDMD-80061-2006113572.htm
    [18]
    左舒翟, 任引, 翁闲, 等.亚热带常绿阔叶林9个常见树种的生物量相对生长模型[J].应用生态学报, 2015, 26(2): 356-362. http://d.old.wanfangdata.com.cn/Periodical/yystxb201502004

    ZUO S D, REN Y, WENG X, et al. Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China[J]. The Journal of Applied Ecology, 2015, 26(2): 356-362. http://d.old.wanfangdata.com.cn/Periodical/yystxb201502004
    [19]
    MUUKKONEN P. Generalized allometric volume and biomass equations for some tree species in Europe[J]. European Journal of Forest Research, 2007, 126(2): 157-166. doi: 10.1007/s10342-007-0168-4
    [20]
    曹福亮.中国银杏志[M].北京:中国林业出版社, 2007.

    CAO F L. Chinese notes of Ginkgo biloba[M]. Beijing: China Forestry Publishing House, 2007.
    [21]
    陈西娟, 王成章, 叶建中.银杏叶化学成分及其应用研究进展.生物质化学工程[J]. 2008, 42(4): 57-62. doi: 10.3969/j.issn.1673-5854.2008.04.012

    CHEN X J, WANG C Z, YE J Z. Research progress of chemical constituents of Ginkgo biloba Linn. leaves and their application[J]. Biomass Chemical Engineering, 2008, 42(4): 57-62. doi: 10.3969/j.issn.1673-5854.2008.04.012
    [22]
    邵继平, 王伯初, 陈欣, 等.银杏叶提取物药用价值的研究进展[J].重庆大学学报(自然科学版), 2003, 26(1): 130-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqdxxb200301034

    SHAO J P, WANG B C, CHEN X, et al. Advanced research on pharmacology value of the extracts of Ginkgo biloba leaves[J]. Journal of Chongqing University(Natural Science Edition), 2003, 26(1): 130-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqdxxb200301034
    [23]
    彭方仁, 张纪林, 李杰, 等.海岸带不同林农复合经营模式的生物生产力研究[J].南京林业大学学报(自然科学版), 2000, 24(2): 78-82. doi: 10.3969/j.issn.1000-2006.2000.02.019

    PENG F R, ZHANG J L, LI J, et al. Studies on biomass productivity of three different agroforestry models in seacoast area[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2000, 24(2): 78-82. doi: 10.3969/j.issn.1000-2006.2000.02.019
    [24]
    曹林, 阮宏华, 代劲松, 等.基于HJ-1A/1B CCD数据的区域银杏生物量估测及碳密度制图[J].南京林业大学学报(自然科学版), 2013, 37(2): 8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlydxxb201302002

    CAO L, RUAN H H, DAI J S, et al. The regional biomass estimation and carbon density mapping of Ginkgo biloba based on HJ-1A/1B CCD satellite image[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(2): 8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlydxxb201302002
    [25]
    于庚康, 罗艳, 高苹, 等.区域农业经济气象敏感性和气象经济效益[J].生态学杂志, 2012, 31(5): 1265-1271. http://d.old.wanfangdata.com.cn/Periodical/stxzz201205033

    YU G K, LUO Y, GAO P, et al. Meteorological sensitivity and meteorological services economic benefit of regional agricultural economy[J]. Chinese Journal of Ecology, 2012, 31(5): 1265-1271. http://d.old.wanfangdata.com.cn/Periodical/stxzz201205033
    [26]
    孟宪宇.测树学[M].北京:中国林业出版社, 2006: 197-199.

    MENG X Y. Forest measurement[M]. Beijing: China Forestry Publishing House, 2006: 197-199.
    [27]
    WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d480b7b7505f7c5bcdc3b33c43141c0f
    [28]
    明安刚, 郑路, 麻静, 等.铁力木人工林生物量与碳储量及其分配特征[J].北京林业大学学报, 2015, 37(2): 32-40. doi: 10.13332/j.cnki.jbfu.2015.02.015

    MING A G, ZHEN L, MA J, et al. Biomass and carbon stock and allocation characteristic in Mesua ferrea plantation[J]. Journal of Beijing Forestry University, 2015, 37(2): 32-40. doi: 10.13332/j.cnki.jbfu.2015.02.015
    [29]
    GOWER S T, KUCHARIK C J, NORMAN J M. Direct and indirect estimation of leaf area index, APAR, and net primary production of terrestrial ecosystems[J]. Remote Sensing of Environment, 1999, 70(1): 29-51. doi: 10.1016/S0034-4257(99)00056-5
    [30]
    HALL R J, CASE B S. Erratum: assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada[J]. Canadian Journal of Forest Research, 2008, 38(6): 878-889. doi: 10.1139/X08-906#.XXMLYPk6s7M
    [31]
    SALIS S M, ASSIS M A, MATTOS P P. Estimating the aboveground biomass and wood volume of savanna woodlands in Brazil's Pantanal Wetlands based on allometric correlations[J]. Forest Ecology & Management, 2006, 228(1): 61-68. https://www.sciencedirect.com/science/article/pii/S0378112706001344
    [32]
    TER-MIKAELIAN M T, KORZUKHIN M D. Biomass equations for sixty-five North American tree species[J]. Forest Ecology & Management, 1997, 97(1): 1-24. doi: 10.1016-S0378-1127(97)00019-4/
    [33]
    ZIANIS D. Predicting mean aboveground forest biomass and its associated variance[J]. Forest Ecology & Management, 2008, 256(6): 1400-1407. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ029672022/
    [34]
    BEETS P N, KIMBERLEY M O, OLIVER G R, et al. Allometric equations for estimating carbon stocks in natural forest in New Zealand[J]. Forests, 2012, 3(3): 818-839. doi: 10.3390/f3030818
    [35]
    NÁVAR J. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico[J]. Forest Ecology & Management, 2009, 257(2): 427-434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe7cbaf2e457a8d05402279feb1f2f4c
    [36]
    WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology & Management, 2006, 222(1): 9-16. https://www.sciencedirect.com/science/article/pii/S0378112705005888
    [37]
    PARRESOL B R. Assessing tree and stand biomass: a review with examples and critical comparisons[J]. Forest Science, 1999, 45(4): 573-593. http://europepmc.org/abstract/AGR/IND22056385
    [38]
    ZABEK L M, PRESCOTT C E. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia[J]. Forest Ecology & Management, 2006, 223(1-3): 291-302. https://www.sciencedirect.com/science/article/pii/S0378112705007206
    [39]
    SILESHI G W. A critical review of forest biomass estimation models, common mistakes and corrective measures[J]. Forest Ecology and Management, 2014, 329: 237-254. doi: 10.1016/j.foreco.2014.06.026
    [40]
    NELSON B W, MESQUITA R, PEREIRA J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. Forest Ecology & Management, 1999, 117(1-3): 149-167. doi: 10.1016-S0378-1127(98)00475-7/
    [41]
    KOZAK A, KOZAK R. Does cross validation provide additional information in the evaluation of regression models?[J]. Canadian Journal of Forest Research, 2003, 33(6): 1499.
    [42]
    PEICHL M, ARAIN M A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests[J]. Forest Ecology & Management, 2007, 253(1-3): 68-80. doi: 10.1016-j.foreco.2007.07.003/
    [43]
    董点, 林天喜, 唐景毅, 等.紫椴生物量分配格局及异速生长方程[J].北京林业大学学报, 2014, 36(4): 54-63. doi: 10.13332/j.cnki.jbfu.2014.04.013

    DONG D, LIN T X, TANG J Y, et al. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54-63. doi: 10.13332/j.cnki.jbfu.2014.04.013
    [44]
    HOUGHTON R A, LAWRENCE K T, HACKLER J L, et al. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates[J]. Global Change Biology, 2001, 7(7): 731-746. doi: 10.1046/j.1365-2486.2001.00426.x
    [45]
    汪金松, 张春雨, 范秀华, 等.臭冷杉生物量分配格局及异速生长模型[J].生态学报, 2011, 31(14): 3918-3927. http://d.old.wanfangdata.com.cn/Periodical/stxb201114007

    WANG J S, ZHANG C Y, FAN X H, et al. Biomass allocation patterns and allometric models of Abies nephrolepis Maxim.[J]. Acta Ecologica Sinica, 2011, 31(14): 3918-3927. http://d.old.wanfangdata.com.cn/Periodical/stxb201114007
    [46]
    ZHANG H, SONG T, WANG K, et al. Influences of stand characteristics and environmental factors on forest biomass and root-shoot allocation in southwest China[J]. Ecological Engineering, 2016, 91: 7-15. doi: 10.1016/j.ecoleng.2016.01.040
    [47]
    黄玫, 季劲钧, 曹明奎, 等.中国区域植被地上与地下生物量模拟[J].生态学报, 2006, 26(12): 4156-4163. doi: 10.3321/j.issn:1000-0933.2006.12.031

    HUANG M, JI J J, CAO M K, et al. Modeling study of vegetation shoot and root biomass in China[J]. Acta Ecologica Sinica, 2006, 26(12): 4156-4163. doi: 10.3321/j.issn:1000-0933.2006.12.031
    [48]
    LI Z, KURZ W A, APPS M J, et al. Belowground biomass dynamics in the carbon budget model of the Canadian forest sector: recent improvements and implications for the estimation of NPP and NEP[J]. Canadian Journal of Forest Research, 2011, 33(1): 126-136. doi: 10.1139/x02-165#.XXML6fk6s7M
    [49]
    LEVERENZ J W. Shade-shoot structure, photosynthetic performance in the field, and photosynthetic capacity of evergreen conifers[J]. Tree Physiology, 1996, 16(16): 109-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000001746605
    [50]
    BRIX H. Effects of thinning and nitrogen fertilization on branch and foliage production in Douglas-fir[J]. Canadian Journal of Forest Research, 1981, 10(11): 502-511. doi: 10.1139-x81-069/
    [51]
    XIAO C W, CEULEMANS R. Allometric relationships for below-and aboveground biomass of young Scots pines[J]. Forest Ecology & Management, 2005, 203(1-3): 177-186. doi: 10.1016-j.foreco.2004.07.062/
    [52]
    LACLAU P. Root biomass and carbon storage of ponderosa pine in a northwest Patagonia plantation[J]. Forest Ecology & Management, 2003, 173(1): 353-360. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd23d10b04d27e526ac15a2c3d5a8434
    [53]
    NETER J, KUTNER M H, NACHTSHEIM C J, et al. Applied linear statistical model[J]. Journal of the American Statistical Association, 1986, 81: 19-32. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026998328/
    [54]
    李轩然, 刘琪璟, 陈永瑞, 等.千烟洲人工林主要树种地上生物量的估算[J].应用生态学报, 2006, 17(8): 1382-1388. doi: 10.3321/j.issn:1001-9332.2006.08.005

    LI X R, LIU Q J, CHEN Y R, et al. Aboveground biomass of three conifers in Qianyanzhou plantation[J]. The Journal of Applied Ecology, 2006, 17(8): 1382-1388. doi: 10.3321/j.issn:1001-9332.2006.08.005
    [55]
    向玮, 雷相东, 刘刚, 等.近天然落叶松云冷杉林单木枯损模型研究[J].北京林业大学学报, 2008, 30(6): 90-98. doi: 10.3321/j.issn:1000-1522.2008.06.014

    XIANG W, LEI X D, LIU G, et al. Individual tree mortality models for semi-natural larch-spruce-fir forests in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2008, 30(6): 90-98. doi: 10.3321/j.issn:1000-1522.2008.06.014
    [56]
    MOWRER H T, FRAYER W E. Variance propagation in growth and yield projections[J]. Canadian Journal of Forest Research, 1986, 16(6): 1196-1200. doi: 10.1139/x86-213

Catalog

    Article views (3233) PDF downloads (113) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return