• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Fu Qun, Wang Mengli, Gui Bin, Guo Qingqi. Improvement of insulin resistant HepG2 cells glycometabolism effect by polyphenol from the fruit of Viburnum sargentii[J]. Journal of Beijing Forestry University, 2020, 42(2): 106-113. DOI: 10.12171/j.1000-1522.20190243
Citation: Fu Qun, Wang Mengli, Gui Bin, Guo Qingqi. Improvement of insulin resistant HepG2 cells glycometabolism effect by polyphenol from the fruit of Viburnum sargentii[J]. Journal of Beijing Forestry University, 2020, 42(2): 106-113. DOI: 10.12171/j.1000-1522.20190243

Improvement of insulin resistant HepG2 cells glycometabolism effect by polyphenol from the fruit of Viburnum sargentii

More Information
  • Received Date: May 30, 2019
  • Revised Date: September 14, 2019
  • Available Online: January 07, 2020
  • Published Date: March 02, 2020
  • ObjectiveThis study investigated the improvement of the polyphenol from the fruit of Viburnum sargentii (PVSK) on insulin resistance (IR) model of HepG2 cells, and to evaluate its hypoglycemic activity.
    MethodHigh concentration insulin was used to induce in vitro IR model, and the stability (cell activity method) and reliability (Z factor method) of the model were evaluated. Blank group, IR model group, positive control group (metformin) and PVSK group were set up. Cell viability was detected by MTT assay, glucose content in culture medium was detected by Glucose oxidase method and the consumption of glucose was clculated; glycogen content was determined by anthrone method; the activity of hexokinase (HK) and pyruvate kinase (PK) were determined by colorimetric method. Enzyme-linked immunosorbent assay (ELISA) was used to detect the activity of phosphoenolpyruvate kinase (PEPCK) and glucose hexaphosphatase (G6PC).
    ResultInsulin induction treatment of HepG2 cells at 10− 6 mol/L for 24 hours was the best condition for the production of insulin resistance model, and the IR model had high stability and reliability within 12 ~ 36 hours. 0.10 ~ 1.00 mg/mL PVSK polyphenol group had significantly higher glucose consumption than model group (P < 0.05). The highest glucose consumption was (3.49 ± 0.11) mmol/L in 24 h and 0.50 mg/mL groups, with a consumption rate of 88.81% (P < 0.01). Comparedwith model group, PVSK polyphenols could increase glycogen content by 33.65% (P < 0.01), HK and PK activity by 43.36% (P < 0.05) and 48.41% (P < 0.01), respectively. The inhibition rates of G6PC and PEPCK activity were 22.86% (P < 0.01) and 17.33% (P < 0.05), respectively.
    ConclusionPVSK could increase HK and PK activities of IR-HepG2 cells, accelerate glycolysis and increase glycogen content. Inhibiting the activity of G6PC and PEPCK can reduce the production of endogenous glucose. Therefore, the polyphenols of PVSK have a certain effect on the treatment of insulin resistance cells.
  • [1]
    杜灵洁, 杨晨娜, 李尔敏, 等. 荚蒾属植物药用资源研究进展[J]. 台州学院学报, 2017, 39(6):6−9.

    Du L J, Yang C N, Li E M, et al. Research progress on medicinal resources of Viburnum[J]. Journal of Taizhou University, 2017, 39(6): 6−9.
    [2]
    庞晓飞, 陈晓凤, 郭守东, 等. 天目琼花化学成分与药理作用研究进展[J]. 泰山医学院学报, 2015, 36(3):358−360. doi: 10.3969/j.issn.1004-7115.2015.03.055

    Pang X F, Chen X F, Guo S D, et al. Research progress in chemical constituents and pharmacological effects of Viburnum sargentii Koehne[J]. Journal of Taishan Medical College, 2015, 36(3): 358−360. doi: 10.3969/j.issn.1004-7115.2015.03.055
    [3]
    李攀登, 李金玲, 王宏伟, 等. 鸡树条荚蒾化学成分测定分析[J]. 人参研究, 2009, 21(2):16−19. doi: 10.3969/j.issn.1671-1521.2009.02.005

    Li P D, Li J J, Wang H W, et al. Determination and analysis of chemical constituents of Viburnum sargentii Koehne[J]. Ginseng Research, 2009, 21(2): 16−19. doi: 10.3969/j.issn.1671-1521.2009.02.005
    [4]
    宋扬. 鸡树条荚蒾果实中酚类成分的研究[D]. 长春: 吉林大学, 2015.

    Song Y. Study on phenolic constituents in Viburnum sargentii Koehne[D]. Changchun: Jilin University, 2015.
    [5]
    李敏, 李玉武, 李余先, 等. 鸡树条荚蒾对小鼠血清SOD及MDA水平的影响[J]. 吉林农业科技学院学报, 2013, 22(1):4−6. doi: 10.3969/j.issn.1674-7852.2013.01.002

    Li M, Li Y W, Li Y X, et al. 2013. Effect of Viburnum sargentii Koehne on serum SOD and MDA levels in mice[J]. Journal of Jilin Agricultural Science and Technology College, 2013, 22(1): 4−6. doi: 10.3969/j.issn.1674-7852.2013.01.002
    [6]
    Chen J, Shao J, Zhao C, et al. Chemical constituents from Viburnum fordiae Hanceand their anti-inflammatory and antioxidant activities[J]. Archives of Pharmacal Research, 2018, 41(6): 1−8.
    [7]
    李敏, 赵权, 武晓林. 鸡树条荚蒾抗炎活性研究[J]. 黑龙江农业科学, 2012, 2012(11):136−138. doi: 10.3969/j.issn.1002-2767.2012.11.038

    Li M, Zhao Q, Wu X L. Anti-inflammatory activity of Viburnum sargentii Koehne[J]. Heilongjiang Agricultural Science, 2012, 2012(11): 136−138. doi: 10.3969/j.issn.1002-2767.2012.11.038
    [8]
    弥春霞, 陈欢, 任玉兰, 等. 鸡树条荚蒾果实提取物抑菌作用研究[J]. 安徽农业科学, 2010, 38(22):11767−11782. doi: 10.3969/j.issn.0517-6611.2010.22.038

    Mi C X, Chen H, Ren Y L, et al. Study on antibacterial activity of extracts from the fruits of Viburnum sargentii Koehne[J]. Journal of Anhui Agricultural Sciences, 2010, 38(22): 11767−11782. doi: 10.3969/j.issn.0517-6611.2010.22.038
    [9]
    张琳. 鸡树条荚蒾果实的药用研究[D]. 哈尔滨: 黑龙江中医药大学, 2003.

    Zhang L. Medicinal study of Viburnum sargentii Koehne[D]. Harbin: Heilongjiang University of Traditional Chinese Medicine, 2003.
    [10]
    Bae K E, Chong H S, Kim D S, et al. Compounds from Viburnum sargentii Koehne and evaluation of their cytotoxic effects on human cancer cell lines[J]. Molecules, 2010, 15(7): 4599−4609. doi: 10.3390/molecules15074599
    [11]
    Iwai K, Onodera A, Matsue H. Inhibitory effects of Viburnum dilatatum Thunb.(gamazumi) on oxidation and hyperglycemia in ratswith tozotocin induced diabetes[J]. Agric Food Chem, 2004, 52(4): 1002−1007. doi: 10.1021/jf0302557
    [12]
    符群, 王梦丽, 李卉, 等. 高速剪切-超声联合提取鸡树条荚蒾果降血糖成分的工艺研究[J]. 现代食品科技, 2018, 34(11):157−164.

    Fu Q, Wang M L, Li H, et al. High-speed shear-ultrasonic combined extraction of hypoglycemic components from Viburnum sargentii Koehne[J]. 现代食品科技, 2018, 34(11): 157−164.
    [13]
    阎芙洁. 桑葚花色苷对糖代谢的调控作用及其机制研究[D]. 杭州: 浙江大学, 2018.

    Qi F J. Study on the beneficicl effect and mechanism of mulberry anthocyanins on glucose metabolism regulation[D]. Hangzhou: Zhejiang University, 2018.
    [14]
    Adeva A, Maria M, Ameneiros R, et al. Insulin resistance is associated with subclinical vascular disease in humans[J]. World Journal of Diabetes, 2019, 10(2): 63−77. doi: 10.4239/wjd.v10.i2.63
    [15]
    Adams L A, Anstee Q M, Tilg H, et al. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases[J]. Gut, 2017, 66(6): 1138−1153. doi: 10.1136/gutjnl-2017-313884
    [16]
    Ranilla LG, Kwon Y, Apostolidis, et al. Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America[J]. Bioresource Technology, 2010, 101(12): 4676−4689. doi: 10.1016/j.biortech.2010.01.093
    [17]
    王晓峰, 周建. 齐墩果酸对胰岛素抵抗HepG2关键酶活性的影响[J]. 医药导报, 2015(9):1139−1141. doi: 10.3870/j.issn.1004-0781.2015.09.004

    Wang X F, Zhou J. Effects of oleanolic acid on key enzyme activities of insulin resistance HepG2[J]. Journal of Medical Herald, 2015(9): 1139−1141. doi: 10.3870/j.issn.1004-0781.2015.09.004
    [18]
    吴博. 十子代平方改善IR-HepG2细胞的胰岛素抵抗及对肝糖原含量、HK、PK、GLUT-2的影响[D]. 唐山: 华北理工大学, 2016.

    Wu B. Shizidaipingfang ameliorate insulin esistance in Insulin-resistant HepG2 cells and its influence on the content of the liver glycogen, HK, PK, GLUT-2[D]. Tangshan: North China University of Technology, 2016.
    [19]
    Tang Z, Xia N, Yuan X, et al. PRDX1 is involved in palmitate induced insulin resistance via regulating the activity of p38MAPK in HepG2 cells[J]. Biochemical and Biophysical Research Communications, 2015, 465(4): 670−677. doi: 10.1016/j.bbrc.2015.08.008
    [20]
    Li L J, Li G D, Wei H L, et al. Insulin resistance reduces sensitivity to Cis-platinum and promotes adhesion, migration and invasion in HepG2 cells[J]. Asian Pac J Cancer Prev, 2014, 15(7): 3123−3128. doi: 10.7314/APJCP.2014.15.7.3123
    [21]
    Teng W D, Yin W J, Zhao L, et al. Resveratrol metabolites ameliorate insulin resistance in HepG2 hepatocytes by modulating IRS-1/AMPK[J]. RSC Advances, 2018, 63(8): 36034−36042.
    [22]
    毕显禹. 鸡树条荚蒾繁育技术研究[D]. 哈尔滨: 东北林业大学, 2018.

    Bi X Y. Study on breeding technologies of Viburnum sargentii Koehne[D]. Harbin: Northeast Forestry University, 2018.
    [23]
    黄皓, 王珍妮, 李莉, 等. 甘油水溶液提取米糠多酚绿色工艺优化及多酚种类鉴定[J]. 农业工程学报, 2019, 35(4):305−312. doi: 10.11975/j.issn.1002-6819.2019.04.038

    Huang H, Wang Z N, Li L, et al. Optimization of green extrction process and identification of polyphenols variety from rice bran using glycerol/water system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 305−312. doi: 10.11975/j.issn.1002-6819.2019.04.038
    [24]
    杨少青. 以胰岛素抵抗肝细胞模型筛选选糖尿病药物及环烯醚萜类化合物降糖机制的研[D]. 西安: 西北大学, 2013.

    Yang S Q. Screening the anti-hyperglycemic agents by an insulin resistance cell model and meserch of anti-hyperglycemic mechanism of iridoid glucosides[D]. Xi’an: Northwest University, 2013.
    [25]
    齐佳, 王广策, 郑国亚, 等. 岩藻黄素对胰岛素抵抗HepG2细胞葡萄糖消耗的影响[J]. 中国海洋药物, 2017, 36(5):49−54.

    Qi J, Wang G C, Zheng G Y, et al. Effects of fucoxanthin on glucose consumption in insulin resistant HepG2 cells[J]. Chinese Journal of Marine Medicine, 2017, 36(5): 49−54.
    [26]
    Zhang X D. A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays[J]. Genomics, 2007, 89(4): 552−561. doi: 10.1016/j.ygeno.2006.12.014
    [27]
    Sui Y, Wu Z. Alternative statistical parameter for high-throughput screening assay quality assessment[J]. J Biomol Screen, 2007, 12(2): 229−234. doi: 10.1177/1087057106296498
    [28]
    Shao J H, Chen J, Zhao C C, et al. Insecticidal and α-glucosidase inhibitory activities of chemical constituents from Viburnum fordiae Hance[J]. Natural Product Research, 2018(4): 1−6.
    [29]
    Iwai K, Kim M Y, Onodera A, et al. Alpha-glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb[J]. Agric Food Chem, 2006, 54(13): 4588−4592. doi: 10.1021/jf0606353
    [30]
    Ma J Z, Yang X W, Zhang J J, et al. Sterols and Terpenoids from Viburnum odoratissimum[J]. Natural Products & Bioprospecting, 2014, 4(3): 175−180.
    [31]
    Zhao C C, Chen J, Shao J, et al. Neolignan constituents with potential beneficial effects in prevention of type 2 diabetes from Viburnum fordiae Hance fruits[J]. Journal of Agricultural and Food Chemistry, 2018, 66(40): 10421−10430. doi: 10.1021/acs.jafc.8b03772
    [32]
    Zierath J R, Krook A. Molecular mechanisms underlying insulin resistance in skeletal muscle[J]. Lakartidningen, 2010, 107(45): 2802−2805.
    [33]
    Yaribeygi H, Farrokhi FR, Butler AE, et al. Insulin resistance: Review of the underlying molecular mechanisms[J]. Cell Physiol, 2019, 234(6): 8152−8161. doi: 10.1002/jcp.27603
    [34]
    Gray S L, Donald C. Hyperinsulinemiap recedes insulin resistance in mice lacking pancreatic β-cell leptin signaling[J]. Endocrinology, 2010, 151(9): 4178−4186. doi: 10.1210/en.2010-0102
    [35]
    Chen K, Li G, Geng F, et al. Berberine reduces ischemia/reperfusion-induced myocardial apoptosis via activating AMPK and PI3K-Akt signaling in diabetic rats[J]. Apoptosis, 2014, 19(6): 946−957. doi: 10.1007/s10495-014-0977-0
    [36]
    Zheng T, Yang X, Wu D, et al. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway[J]. Br J Pharmacol, 2015, 172(13): 3284−3301. doi: 10.1111/bph.13120
  • Related Articles

    [1]Du Haojia, Lü Wenhua, Liu Qiangqiang, Kong Jing, Wang Xiaoqing. Properties and mechanism of poplar wood modified by melamine-urea-glucose (MUG) biomass resin and sodium silicate compound[J]. Journal of Beijing Forestry University, 2022, 44(5): 124-131. DOI: 10.12171/j.1000-1522.20210535
    [2]Li Lijing, Zhang Zhiwei, Xue Yun, Zhang Jiahang, Han Liebao, Xu Lixin. Effects of low temperature stress on chlorophyll metabolism of Zoysia japonica[J]. Journal of Beijing Forestry University, 2022, 44(2): 91-99. DOI: 10.12171/j.1000-1522.20200400
    [3]Li Yang, Hao Xin, Li Mingrui, Diao Jian, Ma Ling. Functional analysis of P-glycoprotein in drug metabolism of Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2021, 43(11): 71-78. DOI: 10.12171/j.1000-1522.20200387
    [4]ZHANG Kai, ZHOU Yan-tao, WANG Xi-wei, JIANG Hong, WANG Jia-bing, ZHANG Wen-yi, YAN Shan-chun. Effects of copper and cadmium stress on the activities of detoxifying metabolic enzymes in Lymantria dispar[J]. Journal of Beijing Forestry University, 2016, 38(2): 61-67. DOI: 10.13332/j.1000-1522.20150293
    [5]ZHANG Sheng-long, LIU Jing-jing, LOU Xiong-zhen, LIU Yang, TONG Zai-kang, HUANG Hua-hong. Morphological characteristics of cells and main metabolic components in xylem of Cunninghamia lanceolata compression wood.[J]. Journal of Beijing Forestry University, 2015, 37(5): 126-133. DOI: 10.13332/j.1000-1522.20140396
    [6]GAO Qiong, NIU Shi-hui, LI Wei, CHEN Xiao-yang. Regulation of low temperature stress on gibberellin metabolism[J]. Journal of Beijing Forestry University, 2014, 36(6): 135-141. DOI: 10.13332/j.cnki.jbfu.2014.06.025
    [7]ZHANG Ling-yun, WANG Xiao-yi, CAO Yi-bo.. Soluble sugar content and key enzyme activity and the relationship between sugar metabolism and lipid accumulation in developing fruit of Camellia oleifera.[J]. Journal of Beijing Forestry University, 2013, 35(4): 55-60.
    [8]KONG Ying, SUN Ming, PAN Hu-tang, ZHANG Qi-xiang. Advances in metabolism and regulation of floral scent.[J]. Journal of Beijing Forestry University, 2012, 34(2): 146-154.
    [9]CHEN Li-pei, SHEN Yong-bao. Material metabolism of Pinus tabulaeformis seeds during initial germinating stage[J]. Journal of Beijing Forestry University, 2010, 32(2): 69-73.
    [10]HE Yao-qing, ZHENG Cai-xia. Relationship between metabolism in developmental ovule and female-sterile in Pinus tabulaeformis Carr[J]. Journal of Beijing Forestry University, 2007, 29(5): 88-93. DOI: 10.13332/j.1000-1522.2007.05.016
  • Cited by

    Periodical cited type(27)

    1. 杨佳悦,丁国玉,田秀君. 最大熵模型在物种生境预测中的应用研究进展. 应用生态学报. 2025(02): 614-624 .
    2. 杨福成,洪兆春,丁红秀,邵明勤. 基于最大熵模型的鸳鸯潜在越冬分布区预测. 湿地科学. 2024(01): 60-71 .
    3. 陈飞,张杰京,王利繁,熊朝永,樊辉. 中国和老挝跨境区域亚洲象生境时空变化及保护成效. 生态学报. 2024(22): 10222-10233 .
    4. 刘夫仁,赛罕,贺伟,张正一,冯中华,张梓琪,鲍伟东. 内蒙古赛罕乌拉自然保护区马鹿夏季肠道菌群多样性. 野生动物学报. 2023(01): 90-97 .
    5. 张洁,王凯,张翼,严如玉,杨军飞,刘星辰,计勇. 潦河中源段水生条背萤生境适宜性评价. 安徽农业科学. 2023(03): 52-56+61 .
    6. 宋慧芳,党晓宏,高永,蒙仲举,孙艳丽. 基于MaxEnt模型的内蒙古自治区樟子松潜在分布研究. 四川农业大学学报. 2023(02): 203-208+248 .
    7. 张杰京,陈飞,谢菲,张鑫,尹文萍,樊辉. 亚洲象生境长时序变化及其对人象冲突的影响——基于融合MaxEnt与HSI模型的生境适宜性评价方法. 生态学报. 2023(09): 3807-3818 .
    8. 张旭,王玲玲,黄峰,田玉清,杨涛,张玉铭,刘亚恒. 长江中游地区麋鹿生境适宜性分析与生态廊道构建. 华中师范大学学报(自然科学版). 2023(03): 404-411 .
    9. 刘伟,李旭琴,李忠伦,李英,油志远,蒋勇,阮光华,鲁碧耕,杨楠. 四川贡嘎山中华斑羚和中华鬣羚的时空分布及重叠性. 应用生态学报. 2023(06): 1630-1638 .
    10. 申立泉,吴佳忆,周鑫,吕青昕,王燕群,袁乃秀,孟秀祥. 基于MaxEnt模型的北京周边山区野生狍(Capreolus pygargus)的生境适宜性评价. 生态学杂志. 2023(10): 2555-2560 .
    11. 吕环鑫,夏少霞,顾婧婧,苏常红,王春晓,崔鹏. 基于MaxEnt模型的仙居县大型兽类和珍稀鸟类栖息地适宜性评价. 生态学杂志. 2023(11): 2797-2805 .
    12. 邹珮雯,徐昉. 生态安全格局构建及景观生态风险预测——以赛罕乌拉国家级自然保护区为例. 生态学报. 2023(23): 9981-9993 .
    13. 杨超,范韦莹,蔡晓斌,王学雷,张玉铭,李鹏飞. 基于MaxEnt模型的湖北石首麋鹿国家级自然保护区散养麋鹿夏季生境适宜性评价. 长江流域资源与环境. 2022(02): 336-344 .
    14. 秦委,张虹,杨明霞,罗汉,江素萍,刘守金. 基于MaxEnt模型和ArcGIS的东南茜草潜在分布研究. 中国中医药信息杂志. 2022(05): 1-4 .
    15. 刘红彩,赵纳勋,庄钰琪,杨梅玲,赵惠茹,叶新平. 基于MaxEnt模型的秦岭山地斑羚生境适宜性评价. 生态学报. 2022(10): 4181-4188 .
    16. 滕扬,张沼,张书理,杨永昕,贺伟,王娜,张正一,鲍伟东. 大兴安岭南段马鹿生境适宜性分析与生态廊道构建. 生态学报. 2022(14): 5990-6000 .
    17. 王金凤,徐基良,李建强,周春发,邓文洪. 基于动物适宜栖息地的北京市自然保护地保护成效评估. 生态学报. 2022(19): 7807-7817 .
    18. 刘艳华,李卫东,张子栋,梁卓,杨娇,牛莹莹,周绍春. 黑龙江省老爷岭南部野猪种群现状及栖息地适宜性. 生态学杂志. 2022(11): 2208-2215 .
    19. 刘夫仁,贺伟,赛罕,冯中华,杨永昕,张正一,鲍伟东. 同域分布马鹿与中华斑羚的冬夏季食物构成比较. 动物学杂志. 2022(06): 845-854 .
    20. 孙珊,齐增湘,周敏,白瑾瑾,吕婧玮,刘鑫. 野生哺乳动物生态廊道构建——以云豹为例. 安徽农业科学. 2021(07): 81-84+96 .
    21. 陈智强,赵增辉,王远飞,韦力,丁国骅,林植华. 基于红外相机技术和MaxEnt模型的黑麂(Muntiacus crinifrons)活动节律分析和潜在适生区预测. 生态学报. 2021(09): 3535-3547 .
    22. 钟雪,杨楠,张龙,程跃红,冯茜,胡强,金义国. 卧龙国家级自然保护区绿尾虹雉种群分布和生境质量评价. 四川动物. 2021(05): 509-516 .
    23. 郭飞龙,徐刚标,卢孟柱,孟艺宏,袁承志,郭恺琦. 基于MaxEnt模型分析胡杨潜在适宜分布区. 林业科学. 2020(05): 184-192 .
    24. 龚旭,付强,王磊,杨彪,张全建,张远彬. 四川鞍子河保护地水鹿和羚牛栖息地适宜性评价与重叠性分析. 生态学报. 2020(14): 4842-4851 .
    25. 李响,张成福,贺帅,王雨晴,苗林. MaxEnt模型综合应用研究进展分析. 绿色科技. 2020(14): 14-17 .
    26. 张晓晨,邵长亮,葛炎,陈晨,徐文轩,杨维康. 新疆卡拉麦里山有蹄类野生动物自然保护区夏季蒙古野驴适宜生境与种群数量评估. 应用生态学报. 2020(09): 2993-3004 .
    27. Jing Yang,Guo-Fen Zhu,Jian Jiang,Chang-Lin Xiang,Fu-Li Gao,Wei-Dong Bao. Non-invasive genetic analysis indicates low population connectivity in vulnerable Chinese gorals:concerns for segregated population management. Zoological Research. 2019(05): 439-448 .

    Other cited types(24)

Catalog

    Article views (1781) PDF downloads (50) Cited by(51)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return