• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Yang, Hao Xin, Li Mingrui, Diao Jian, Ma Ling. Functional analysis of P-glycoprotein in drug metabolism of Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2021, 43(11): 71-78. DOI: 10.12171/j.1000-1522.20200387
Citation: Li Yang, Hao Xin, Li Mingrui, Diao Jian, Ma Ling. Functional analysis of P-glycoprotein in drug metabolism of Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2021, 43(11): 71-78. DOI: 10.12171/j.1000-1522.20200387

Functional analysis of P-glycoprotein in drug metabolism of Bursaphelenchus xylophilus

More Information
  • Received Date: December 08, 2020
  • Revised Date: April 06, 2021
  • Available Online: June 21, 2021
  • Published Date: November 29, 2021
  •   Objective  This paper aims to reveal the molecular mechanism of drug sensitivity of Bursaphelenchus xylophilus to provide a theoretical basis for the control of B. xylophilus.
      Method  In this study, the homologous detoxification gene Bx-pgp23 of Caenorhabditis elegans was obtained from the genome of Bursaphelenchus xylophilus, and PCR amplified the protein-coding region of the gene. Subsequently, the physicochemical properties, hydrophobicity, transmembrane distribution, phosphorylation sites, secondary structure, and tertiary structure of the protein Bx-PGP23 were analyzed and predicted by bioinformatics. The effect of Bx-pgp23 silencing on drug sensitivity of B. xylophilus was analyzed by RNAi technology.
      Result  Bioinformatics prediction indicated that the stability coefficient of PGP protein was 38.31 and the hydrophilic coefficient was −0.018. The tertiary structure predicted that PGP protein had multiple amino acids involved in the formation of α-helix and β-sheet with multiple nucleotide-binding domains and transmembrane domain. The gene silencing of Bx-pgp23 gene was performed by RNAi technology, after that, the expression of Bx-pgp23 gene was changed to 42.65% of the original. The results of the bioassay experiment suggested that after 24 h treatment with 1.5 and 2.5 g/L matrine solution, the mortality rate of pine nematode increased by 7.2% and 6.4% in the RNAi group compared with the control group, respectively. After treatment for 48 h with 1.5 and 2.5 g/L matrine solution, the mortality rate of B. xylophilus in the RNAi group increased by 9.0% and 7.2% compared with the control group.
      Conclusion  Protein Bx-PGP23 was a stable hydrophilic protein with transmembrane efflux function. The Bx-pgp23 gene was successfully cloned and the dsRNA of the gene was synthesized. Bx-pgp23 gene silencing affected the sensitivity of B. xylophilus to matrine solution and the mortality rate of B. xylophilus in the RNAi group was significantly higher than the control group under the same mass concentration of matrine solution. The results demonstrate that the Bx-pgp23 gene plays a positive regulatory role in the regulation of drug metabolism in B. xylophilus.
  • [1]
    郝昕. 松材线虫多效耐药基因克隆及功能研究[D]. 哈尔滨: 东北林业大学, 2019.

    Hao X. Cloning and functional analysis of multidrug resistance gene in Bursaphelenchus xylophilus[D]. Harbin: Northeast Forestry University, 2019.
    [2]
    孙红, 周艳涛, 李晓冬, 等. 2020年全国主要林业有害生物发生情况及2021年发生趋势预测[J/OL]. 中国森林病虫 [2021−03−24]. https://doi.org/10.19688/j.cnki.issn1671-0886.20210004.

    Sun H, Zhou Y T, Li X D, et al. Occurrence of major forestry pests in China in 2020 and prediction of occurrence trend in 2021[J/OL]. Forest Pest and Disease [2021−03−24]. https://doi.org/10.19688/j.cnki.issn1671-0886.20210004.
    [3]
    胡龙娇, 吴小芹. 松树抗松材线虫病机制研究进展[J]. 生命科学, 2018, 30(6):659−666.

    Hu L J, Wu X Q. Research progress on the mechanism of pine response to the infection of Bursaphelenchus xylophilus[J]. Chinese Bulletin of Life Sciences, 2018, 30(6): 659−666.
    [4]
    徐晓朋. 松材线虫病综合防治技术[J]. 绿色科技, 2019, 10(19):102−103, 107. doi: 10.3969/j.issn.1674-9944.2019.19.040

    Xu X P. Comprehensive control technology of Bursaphelenchus xylophilus[J]. Journal of Green Science and Technology, 2019, 10(19): 102−103, 107. doi: 10.3969/j.issn.1674-9944.2019.19.040
    [5]
    覃贵勇. 我国松材线虫病化学防治研究进展[J]. 河南农业, 2016, 8(23):38−40.

    Qin G Y. Research progress on chemical control of Bursaphelenchus xylophilus in China[J]. Agriculture of Henan, 2016, 8(23): 38−40.
    [6]
    Matsuda K, Kimura M, Komai K, et al. Nematicidal activities of (-)-N-methylcytisine and (-)-anagyrine from Sophora flavescens against pine wood nematodes (organic chemistry)[J]. Agricultural & Biological Chemistry, 1989, 53(8): 2287−2288.
    [7]
    Matsuda K, Yamada K, Kimura M, et al. Nematicidal activity of matrine and its derivatives against pine wood nematodes[J]. Journal of Agricultural & Food Chemistry, 1991, 39(1): 189−191.
    [8]
    崔慕华, 孙敦恒, 蒋显龙, 等. 苦参碱灌根防治山药根结线虫病效果初报[J]. 长江蔬菜, 2005(12):35.

    Cui M H, Sun D H, Jiang X L, et al. Preliminary report on the effect of matrine root irrigation on controlling yam root knot nematode[J]. Journal of Changjiang Vegetables, 2005(12): 35.
    [9]
    Dassa E, Bouige P. The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms[J]. Research in Microbiology, 2001, 152(3−4): 229.
    [10]
    柏家林, 蔡葵蒸, 何进全. P糖蛋白介导的寄生虫抗药性及其逆转的研究进展[J]. 中国兽医科学, 2010, 40(10):1085−1092.

    Bai J L, Cai K Z, He J Q. Advances in P-glycoprotein-mediated anthelmintic resistance and its reversal in parasites[J]. Chinese Veterinary Science, 2010, 40(10): 1085−1092.
    [11]
    Stupp G S, Reuss S, Izrayelit Y, et al. Chemical detoxification of small molecules by Caenorhabditis elegans[J]. Acs Chemical Biology, 2013, 8(2): 309−313. doi: 10.1021/cb300520u
    [12]
    Broeks A, Janssen H W, Calafat J, et al. A P-glycoprotein protects Caenorhabditis elegans against natural toxins[J]. The EMBO Journal, 1995, 14(9): 1858−1866. doi: 10.1002/j.1460-2075.1995.tb07178.x
    [13]
    Ardelli B F, Prichard R K. Inhibition of P-glycoprotein enhances sensitivity of Caenorhabditis elegans to ivermectin[J]. Veterinary Parasitology, 2013, 191(3−4): 264−275. doi: 10.1016/j.vetpar.2012.09.021
    [14]
    Graef J D, Demeler J, Skuce P, et al. Gene expression analysis of ABC transporters in a resistant Cooperia oncophora isolate following in vivo and in vitro exposure to macrocyclic lactones[J]. Parasitology, 2013, 140(4): 1−10.
    [15]
    许佳瑶, 陈俏丽, 张瑞芝, 等. 松材线虫Bx-ubc-3基因克隆及泛素通路鉴定[J]. 森林工程, 2019, 35(5):9−15. doi: 10.3969/j.issn.1006-8023.2019.05.002

    Xu J Y, Chen Q L, Zhang R Z, et al. Genetic cloning of Bx-ubc-3 and identification of ubiquitin pathway from Bursaphelenchus xylophilus[J]. Forest Engineering, 2019, 35(5): 9−15. doi: 10.3969/j.issn.1006-8023.2019.05.002
    [16]
    郝昕, 王峰, 马玲, 等. 松材线虫耐药基因克隆及其功能[J]. 东北林业大学学报, 2018, 46(9):89−92, 97. doi: 10.3969/j.issn.1000-5382.2018.09.019

    Hao X, Wang F, Ma L, et al. Cloning and function of resistance gene of Bursaphelenchus xylophilus[J]. Journal of Northeast Forestry University, 2018, 46(9): 89−92, 97. doi: 10.3969/j.issn.1000-5382.2018.09.019
    [17]
    Kikuchi T, Cotton J A, Dalzell J J, et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus[J/OL]. PLoS Pathogens, 2011, 7(9): e1002219 [2020−14−13]. https://doi.org/10.1371/journal.ppat.1002219.
    [18]
    Seddigh S, Darabi M. Functional, structural, and phylogenetic analysis of mitochondrial cytochrome b (cytb) in insects[J]. Mitochondrial DNA Part A, 2018, 29(2): 236−249. doi: 10.1080/24701394.2016.1275596
    [19]
    Diao J, Hao X, Ma W, et al. Bioinformatics analysis of structure and function in the MRP gene family and its expression in response to various drugs in Bursaphelenchus xylophilus[J]. Journal of Forestry Research, 2021, 32(2): 779−787. doi: 10.1007/s11676-019-01086-6
    [20]
    王军伟, 吴秋云, 毛舒香, 等. 外源物质调控芥蓝幼苗CYP83A1基因表达及其生物信息学分析[J]. 分子植物育种, 2019, 17(24):7996−8004.

    Wang J W, Wu Q Y, Mao S X, et al. Regulation of CYP83A1 gene expression in cabbage seedling by exogenous substances and its bioinforma analysis[J]. Molecular Plant Breeding, 2019, 17(24): 7996−8004.
    [21]
    念波. 松材线虫谷胱甘肽巯基转移酶基因BxGST3和BxGST1全长克隆和功能分析[D]. 南京: 南京林业大学, 2017.

    Nian B. Full-length cloning and functional analysis of glutathione S-transferase genes BxGST3 and BxGST1 from Bursaphelenchus xylophilus[D]. Nanjing: Nanjing Forestry University, 2017.
    [22]
    王博文, 刘伟璐, 王峰, 等. 低温调控Bx-SCD促进松材线虫脂肪积累[J]. 东北林业大学学报, 2017, 45(7):89−93. doi: 10.3969/j.issn.1000-5382.2017.07.018

    Wang B W, Liu W L, Wang F, et al. Fat accumulation in Bursaphelenchus xylophilus by positively regulating Bx-SCD under low temperature[J]. Journal of Northeast Forestry University, 2017, 45(7): 89−93. doi: 10.3969/j.issn.1000-5382.2017.07.018
    [23]
    Ali S, Zhang C, Wang Z, et al. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius)[J]. Scientific Reports, 2017, 7: 1−14. doi: 10.1038/s41598-016-0028-x
    [24]
    Li Y, Zheng C, Liu K, et al. Transformation of multi-antibiotic resistant Stenotrophomonas maltophilia with GFP gene to enable tracking its survival on pine trees[J]. Forests, 2019, 10(3): 231. doi: 10.3390/f10030231
    [25]
    Kerboeuf D, Guegnard F. Anthelmintics are substrates and activators of nematode P glycoprotein[J]. Antimicrobial Agents & Chemotherapy, 2011, 55(5): 2224−2232.
    [26]
    Dermauw W, van Leeuwen T. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance[J]. Insect Biochemistry and Molecular Biology, 2014, 45(1): 89−110.
  • Related Articles

    [1]Xu Fangze, Sun Hailong, Shi Jingning, He Danni, Wang Fuzeng, Xiang Wei. Spatial pattern analysis of dominant tree species saplings in spruce-fir coniferous and broadleaved mixed forests based on Ripley L function[J]. Journal of Beijing Forestry University, 2024, 46(10): 1-10. DOI: 10.12171/j.1000-1522.20230237
    [2]Liu Chang, Lu Qi, Wang Shengcai, Chen Mengyuan, Xing Shaohua, Wang Qingchun, Yang Jun. Effects of forest gaps on spatial distribution and growth of Phellodendron amurense saplings[J]. Journal of Beijing Forestry University, 2024, 46(2): 9-17. DOI: 10.12171/j.1000-1522.20220030
    [3]An Ran, Xu Fangze, Deng Xiangpeng, Zhao Shanchao, Xiang Wei. Effects of gap size on regeneration of saplings in Picea schrenkiana in Xinjiang of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 23-32. DOI: 10.12171/j.1000-1522.20230116
    [4]Zhou Zeyu, Fu Liyong, Zhang Xiaohong, Zhang Huiru, Lei Xiangdong. Comparison of crown width models and estimation methods of natural spruce fir forest in Jingouling Forest Farm of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(8): 29-40. DOI: 10.12171/j.1000-1522.20210134
    [5]Li Hui, Yang Hua, Xie Rong. Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 54-62. DOI: 10.12171/j.1000-1522.20200131
    [6]Li Yang, Kang Xingang. Mixed model of forest space utilization in spruce-fir coniferous and broadleaved mixed forest of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 71-79. DOI: 10.12171/j.1000-1522.20190112
    [7]Shi Mengmeng, Yang Hua, Wang Quanjun, Yang Chao. Spatial distribution and association of seedlings and saplings in a spruce-fir forest in the Changbai Mountains area of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 1-11. DOI: 10.12171/j.1000-1522.20190071
    [8]LOU Ming-hua, ZHANG Hui-ru, LEI Xiang-dong, LU Jun. An individual height-diameter model constructed using spatial autoregressive models within natural spruce-fir and broadleaf mixed stands.[J]. Journal of Beijing Forestry University, 2016, 38(8): 1-9. DOI: 10.13332/j.1000-1522.20150491
    [9]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [10]FAN Chun-nan, PANG Sheng-jiang, ZHENG Jin-ping, LI Bing, GUO Zhong-ling. Biomass estimating models of saplings for 14 species in Changbaishan Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013, 35(2): 1-9.
  • Cited by

    Periodical cited type(6)

    1. 姜有军. 探究沙木蓼的引种与栽培技术. 农业灾害研究. 2023(03): 40-42 .
    2. 亓守贺,李昊远,张恒,孔凡克,曲威. 复合酶解耦合微生物发酵制备海藻生物有机液肥的研究. 湖北农业科学. 2022(07): 20-24+30 .
    3. 王冠都,王俊,王慧荣,李胜利,张世柏,孙清华,汪强. 有机种植下液肥施用量对番茄生长及品质的影响. 河南科学. 2022(07): 1062-1070 .
    4. 李思,弓瑶,詹保成,李友丽,王利春,郭文忠. 中国有机液肥的应用现状及发展趋势. 中国农学通报. 2021(21): 75-79 .
    5. 刘晓佩,李鸣晓,戴昕,李雪琪,窦润琪,王勇,贾璇,冯作山,安立超. 不同菌剂制备餐厨垃圾液态有机肥过程物质转化规律研究. 环境工程技术学报. 2021(04): 750-755 .
    6. 张世婷. 浅谈沙木蓼的引种与栽培. 中国林业产业. 2021(08): 49-50 .

    Other cited types(4)

Catalog

    Article views (937) PDF downloads (61) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return