• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Sisi, Long Jia, Ding Han. Leaf water absorption and canopy rainfall interception of twenty-one plant species in Beijing[J]. Journal of Beijing Forestry University, 2020, 42(9): 100-110. DOI: 10.12171/j.1000-1522.20190379
Citation: Wang Sisi, Long Jia, Ding Han. Leaf water absorption and canopy rainfall interception of twenty-one plant species in Beijing[J]. Journal of Beijing Forestry University, 2020, 42(9): 100-110. DOI: 10.12171/j.1000-1522.20190379

Leaf water absorption and canopy rainfall interception of twenty-one plant species in Beijing

More Information
  • Received Date: September 29, 2019
  • Revised Date: March 27, 2020
  • Available Online: September 09, 2020
  • Published Date: September 29, 2020
  •   Objective  The rainfall interception by plant canopy plays an important role in reducing stormwater runoff, and the water absorption performance of plant leaves is closely related to the ability of plant canopy to intercept rainfall.
      Method  In order to evaluate the interception ability of plant canopy, the leaf water absorption, canopy interception quantity and canopy interception volume of 21 plant species in Beijing were calculated by water immersion experiment, field measurement and aerial image analysis.
      Result  Research showed that: (1) the relationship between water absorption and immersion time was logarithmic; (2) the water absorption process of plant leaves can be divided into three stages. The water absorption process of trees and shrubs was similar. The mean water absorption of leaves at 20 min was 0.17 and 0.05 g, respectively; the mean water absorption of leaves at 80 min was 0.18 and 0.06 g, respectively; and the mean water absorption of leaves at 120 min was 0.18 and 0.06 g, respectively. The average water absorption of herb leaves was 0.13 g at 20 min, 0.27 g at 40 min, and 0.21 g at 120 min; (3) the canopy rainfall interception of 11 arbor species was between 71.30 and 738.72 g/m2, and the canopy rainfall interception of 6 shrub species was 41.79−275.28 g/m2, the canopy rainfall interception of 4 herb species ranged from 57.82 to 217.49 g/m2, and the canopy interception of evergreen conifers was significantly higher than that of deciduous broadleaved plants; (4) canopy interception of some shrubs and herbs was higher than that of some arbors, such as Buxus sinica and Iris tectorum; (5) the plant canopy interception volume was positively correlated with canopy cover area and plant canopy interception quantity, the evergreen coniferous tree + evergreen shrub + herb combination had the largest canopy interception volume; (6) the ratio of average annual rainfall interception of the Cedrus deodara +Buxus sinica + Iris tectorum community canopy to the total rainfall was 11.57%, which had a significant interception effect on small rainfall events.
      Conclusion  Different plant types and configurations have an impact on urban green space rainfall interception capacity. This study can provide reference for the construction of high retention capacity plant communities and sponge city green space construction.
  • [1]
    王佳, 王思思, 车伍, 等. 雨水花园植物的选择与设计[J]. 北方园艺, 2012(19):77−81.

    Wang J, Wang S S, Che W, et al. Plant selection and design of rain garden[J]. Northern Horticulture, 2012(19): 77−81.
    [2]
    李俊清. 森林生态学[M]. 北京: 高等教育出版社, 2006: 100−103.

    Li J Q. Forest ecology[M]. Beijing: Higher Education Press, 2006: 100−103.
    [3]
    李晶晶, 白岗栓, 张蕊. 陕北丘陵沟壑区常见树种叶片的吸水性能[J]. 中国水土保持科学, 2013, 11(1):99−102.

    Li J J, Bai G S, Zhang R. Water absorption of common trees leaves in loess hilly and gully region of Northern Shaanxi[J]. Science of Soil and Water Conservation, 2013, 11(1): 99−102.
    [4]
    Huang J Y, Black T A, Jassal R S, et al. Modelling rainfall interception by urban trees[J]. Canadian Water Resources Journal / Revue canadienne des ressources hydriques, 2017, 42(4): 336−348. doi: 10.1080/07011784.2017.1375865
    [5]
    Toba T, Ohta T. Factors affecting rainfall interception determined by a forest simulator and numerical model[J]. Hydrological Processes, 2008, 22(14): 2634−2643. doi: 10.1002/hyp.6859
    [6]
    郭胜男, 林萍, 吴荣, 等. 昆明市园林植物树冠截留降雨及其影响因素研究[J]. 广东农业科学, 2014, 41(23):47−51.

    Guo S N, Lin P, Wu R, et al. Study on canopy interception rainfall of garden plant in Kunming and its influencing factors[J]. Guangdong Agricultural Sciences, 2014, 41(23): 47−51.
    [7]
    李想, 王亚明, 孟晨, 等. 基于幼树模拟降雨实验的树冠动态截留模型[J]. 北京林业大学学报, 2018, 40(4):43−50.

    Li X, Wang Y M, Meng C, et al. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43−50.
    [8]
    Návar J. Fitting rainfall interception models to forest ecosystems of Mexico[J]. Journal of Hydrology, 2017, 548: 458−470. doi: 10.1016/j.jhydrol.2017.03.025
    [9]
    Linhoss A C, Siegert C M. A comparison of five forest interception models using global sensitivity and uncertainty analysis[J]. Journal of Hydrology, 2016, 538: 109−116. doi: 10.1016/j.jhydrol.2016.04.011
    [10]
    Návar J. Modeling rainfall interception components of forests: extending drip equations[J]. Agricultural and Forest Meteorology, 2019, 279: 107704. doi: 10.1016/j.agrformet.2019.107704
    [11]
    Junqueira J J A, De Mello C R, De Mello J M, et al. Rainfall partitioning measurement and rainfall interception modelling in a tropical semi-deciduous Atlantic forest remnant[J]. Agricultural and Forest Meteorology, 2019, 275: 170−183. doi: 10.1016/j.agrformet.2019.05.016
    [12]
    Fan J L, Oestergaard K T, Guyot A, et al. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia[J]. Journal of Hydrology, 2014, 515: 156−165. doi: 10.1016/j.jhydrol.2014.04.066
    [13]
    Fathizadeh O, Hosseini S M, Zimmermann A, et al. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands[J]. Science of the Total Environment, 2017, 601−602: 1824−1837. doi: 10.1016/j.scitotenv.2017.05.233
    [14]
    Stringham T K, Snyder K A, Snyder D K, et al. Rainfall interception by single leaf Piñon and Utah Juniper: implications for stand-level effective precipitation[J]. Rangeland Ecology & Management, 2018, 71(3): 327−335.
    [15]
    Ghimire C P, Bruijnzeel L A, Lubczynski M W, et al. Measurement and modeling of rainfall interception by two differently aged secondary forests in upland eastern Madagascar[J]. Journal of Hydrology, 2017, 545: 212−225. doi: 10.1016/j.jhydrol.2016.10.032
    [16]
    Zabret K, Šraj M. Rainfall interception by urban trees and their impact on potential surface runoff[J]. Clean: Soil, Air, Water, 2019, 47(8): 1800327. doi: 10.1002/clen.201800327
    [17]
    车生泉, 于冰沁, 严魏. 海绵城市研究与应用: 以上海城乡绿地建设为例[M]. 上海: 上海交通大学出版社, 2015: 177−178.

    Che S Q, Yu B Q, Yan W. Research and practices for sponge city: taking examples of Shanghai urban and rural green space[M]. Shanghai: Jiaotong University Press, 2015: 177−178.
    [18]
    王文, 诸葛绪霞, 周炫. 植物截留观测方法综述[J]. 河海大学学报(自然科学版), 2010, 38(5):495−504.

    Wang W, Zhuge X X, Zhou X. Methods for plant interception measurement[J]. Journal of Hohai University (Natural Sciences), 2010, 38(5): 495−504.
    [19]
    余开亮. 亚高寒草甸不同退化程度冠层截留容量及其与冠层特征的关系[D]. 兰州: 兰州大学, 2012.

    Yu K L. Canopy rainfall storage capacity related to canopy properties along sub-alpine meadow degradation gradient[D]. Lanzhou: Lanzhou University, 2012.
    [20]
    Garcia-Estringana P, Alonso-Blnso-Estr, Alegre J. Water storage capacity, stemflow and water funneling in Mediterranean shrubs[J]. Journal of Hydrology, 2010, 389(3/4): 363−372.
    [21]
    申晓瑜. 北京常见园林植物叶面积指数模型研究[D]. 北京: 北京林业大学, 2007.

    Shen X Y. Research on the model of leaf area index of common landscape plants in Beijing[M]. Beijing: Beijing Forestry University, 2007.
    [22]
    张毅川. 海绵城市导向下绿地典型下垫面的雨水特征及优化[D]. 武汉: 武汉大学, 2017.

    Zhang Y C. Rainwater characteristics and optimazition of typical inderlying surface of green space under sponge city: taking Xinxiang City as an example[D]. Wuhan: Wuhan University, 2017.
    [23]
    于璐, 苏德荣, 刘艺杉. 3种草坪草叶片的水分吸收特性研究[J]. 北京林业大学学报, 2013, 35(3):97−101.

    Yu L, Su D R, Liu Y S. Characters of leaf water absorption for three turfgrasses[J]. Journal of Beijing Forestry University, 2013, 35(3): 97−101.
    [24]
    康伟健, 刘东焕, 赵世伟, 等. 东北玉簪和白玉簪叶片水分利用效率的差异及原因分析[J]. 植物生理学报, 2017, 53(4):641−648.

    Kang W J, Liu D H, Zhao S W, et al. Causes of differences in water use efficiency between Hosta ensata and H. plantaginea leaves[J]. Plant Physiology Journal, 2017, 53(4): 641−648.
    [25]
    王立新, 李山山. 八宝景天叶片表面润湿性测试与疏水机理分析[J]. 河北科技大学学报, 2018, 39(1):1−8.

    Wang L X, Li S S. Wettability measurement and hydrophobicity mechanism analysis of leaf surface of Hylotelephium erythrostictum[J]. Journal of Hebei University of Science and Technology, 2018, 39(1): 1−8.
    [26]
    牟金磊. 北京市设计暴雨雨型分析[D]. 兰州: 兰州交通大学, 2011.

    Mou J L. Design storm pattern analysis in the city of Beijing[D]. Lanzhou: Lanzhou Jiaotong University, 2011.
    [27]
    游宇, 车伍, 张伟, 等. 8种园林乔木林冠对雨水截留作用的研究[J]. 中国给水排水, 2018, 34(9):121−127.

    You Y, Che W, Zhang W, et al. Effect of rainfall interception by eight species of garden arbors[J]. China Water & Wastewater, 2018, 34(9): 121−127.
    [28]
    陈然, 侯凯翔, 徐众, 等. 徐州市园林植物的冠层雨水截留能力分析[J]. 绿色科技, 2018(3):1−4.

    Chen R, Hou K X, Xu Z, et al. Analysis of canopy rainwater interception capacity of garden plants in Xuzhou City[J]. Journal of Green Science and Technology, 2018(3): 1−4.
    [29]
    刘艳丽, 王全九, 杨婷, 等. 不同植物截留特征的比较研究[J]. 水土保持学报, 2015, 29(3):172−177.

    Liu Y L, Wang Q J, Yang T, et al. Study on interception characteristics of different plants[J]. Journal of Soil and Water Conservation, 2015, 29(3): 172−177.
    [30]
    樊才睿, 李畅游, 贾克力, 等. 不同放牧制度下呼伦湖流域草原植被冠层截留[J]. 生态学报, 2015, 35(14):4716−4724.

    Fan C R, Li C Y, Jia K L, et al. Grass canopy interception of Hulun watershed under different grazing systems[J]. Acta Ecologica Sinica, 2015, 35(14): 4716−4724.
    [31]
    ASCE. Design and construction of urban stormwater management systems[EB/OL]. (1992−10−12)[2019−09−18]. https://www.waterboards.ca.gov/losangeles/water_issues/programs/stormwater/municipal/AdminRecordOrderNoR4_2012_0175/2001LAMS4_AR/Items%20532%20to%20553_reduced.pdf.
    [32]
    白伟岚, 高亦珂, 方翠莲, 等. 一种复层景观草本植物群落的构建方法: 201410108836.3[P]. 2014−06−25.

    Bai W L, Gao Y K, Fang C L, et al. Method for constructing multi-level landscape herb community: 201410108836.3[P]. 2014−06−25.
    [33]
    鲍仁强. 树木在老城区海绵化改造中的应用策略研究[D]. 北京: 北京建筑大学, 2019.

    Bao R Q. Research on the application of urban trees in sponge city construction of old city[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019.
  • Related Articles

    [1]Sun Ruilin, Wang Cheng, Han Wenjing, Bian Qi, Zhang Shujing. Estimates of optimal times for human exposure to sunlight UV radiation in tree shade[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240108
    [2]Sun Yingchun, Liu Ru, Long Ling, Chen Minggui. Low gloss and anti-fingerprint properties of self-wrinkling UV cured polyurethane acrylate wood coatings[J]. Journal of Beijing Forestry University, 2024, 46(4): 149-157. DOI: 10.12171/j.1000-1522.20230351
    [3]Li Wanzhao, Zhang Zheng, Peng Junyi, Wang Xinzhou, Shi Jiangtao, Mei Changtong. Exploring the internal deformation of wood under loading based on X-ray CT[J]. Journal of Beijing Forestry University, 2021, 43(2): 160-164. DOI: 10.12171/j.1000-1522.20200290
    [4]Li Jinyu, Gao Yuan, Zhang Qin, Liu Xiaomin, Gao Hongbo. Genetic identification and analysis of chloroplast division mutants x17-3 and pd50 in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(4): 86-95. DOI: 10.13332/j.1000-1522.20170433
    [5]Zhang Yu-hong, Cheng Kai-shan, Gao Xin, Zhang Xi-guo, Liu Tong. Influence on antioxidants and alkaloid content of Phellodendron amurense seedlings grown under supplementary UV-B radiation[J]. Journal of Beijing Forestry University, 2018, 40(1): 27-36. DOI: 10.13332/j.1000-1522.20170201
    [6]KOU Xin-yue, WANG Yu-jie, ZHANG Xiao-ming, WANG Yun-qi, ZHAO Yang, CHENG Chen. Runoff-sediment relationship and driving force of typical watershed in the third sub-region of hilly loess area, northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(7): 85-93. DOI: 10.13332/j.1000-1522.20140375
    [7]DING Xiao-liu, LIU Jia, ZHAO Hong-xia, WANG Jing, LUO Le, PAN Hui-tang, ZHANG Qi-xiang. Hybrid identification and morphological evaluation of modern roses ( Rosa hybrida ) x Rosa rugosa[J]. Journal of Beijing Forestry University, 2014, 36(5): 123-130. DOI: 10.13332/j.cnki.jbfu.2014.05.005
    [8]GUO Jun-e, LI Tian, SUN Xian-zhi, SUN Xia, ZHENG Cheng-shu. Spermidine participation in the regulation of floral bud differentiation in chrysanthemum (Chrysanthemum x morifolium)[J]. Journal of Beijing Forestry University, 2014, 36(4): 88-93. DOI: 10.13332/j.cnki.jbfu.2014.04.017
    [9]TANG Hui, KONG De-xin, LIANG Hui-ling, WANG Man-lian, SHI Yan-cai, WEI Ji-qing.. Rapid assessment of infrared spectroscopy and chemometrics of Illicium difengpi from different regions by fourier transform[J]. Journal of Beijing Forestry University, 2012, 34(3): 137-141.
    [10]LI Li, XI Bao-tian, YANG Yong-fu. Measurement of residual stress in tensioned circular saws using X-rays[J]. Journal of Beijing Forestry University, 2005, 27(3): 87-90.
  • Cited by

    Periodical cited type(13)

    1. 郭来珍,陈虹,赵善超,陈凤,陈兵权,陈鑫悦. 天山花楸不同种源种子表型变异分析. 种子. 2022(10): 50-57+2 .
    2. 孙永玉,李昆,雷晨雨,田瑞杰,张春华,冯德枫,刘方炎,唐国勇. 干热河谷小桐子不同种源的光合生理及生长性状. 应用与环境生物学报. 2021(02): 351-356 .
    3. 刘莉,王磊,吴丹,赵永军,庄振杰,王震,鲁仪增,刘立江,陆璐,解孝满. 不同种源文冠果种子的表型变异. 经济林研究. 2021(04): 97-105 .
    4. 郭国业,徐莺,唐琳,陈放,韩学琴. 不同地理种源麻疯树表型变异研究. 四川农业大学学报. 2020(02): 143-151+160 .
    5. 句娇,毕泉鑫,赵阳,于丹,崔艺凡,傅光辉,范思琪,陈梦园,于海燕,王利兵. 不同种源文冠果种子及苗期性状地理变异. 江西农业大学学报. 2019(03): 529-540 .
    6. 张毅,敖妍,刘觉非,赵磊磊,张永明. 文冠果种实性状变异规律及优良单株选择. 东北林业大学学报. 2019(09): 1-5 .
    7. 张毅,敖妍,刘觉非,赵磊磊,由海德. 不同分布区文冠果种实性状对生态因子的响应. 西北林学院学报. 2019(05): 85-90 .
    8. 赵海鹄,梁文汇,李宝财,梁忠云. 广西细子龙核仁油化学成分分析. 广西林业科学. 2019(04): 531-534 .
    9. 惠文凯,王益,陈晓阳. 麻疯树种子含油量近红外光谱定标模型的建立. 北京林业大学学报. 2018(01): 1-7 . 本站查看
    10. 何霞,邓成,杨嘉麒,张登,张梦洁,廖柏勇,王芳,陈晓阳. 苦楝种源间生长性状的早期地理变异分析. 北京林业大学学报. 2018(07): 45-54 . 本站查看
    11. 覃敏,尹光天,杨锦昌,李荣生,邹文涛. 米老排不同种源的表型性状变异分析. 浙江农林大学学报. 2017(01): 112-119 .
    12. 许洋,李迎超,冯慧,王迪,丁可君,郭超,刘国军,厉月桥,宁超,贺磊,郭芳. 不同种源栓皮栎种子表型性状的变异分析. 安徽农业科学. 2015(25): 164-167 .
    13. 许洋,李迎超,冯慧,王迪,丁可君,郭超,刘国军,厉月桥,宁超,贺磊,郭芳. 不同种源麻栎种子表型性状的变异分析. 林业科技通讯. 2015(09): 8-12 .

    Other cited types(5)

Catalog

    Article views (1968) PDF downloads (131) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return