• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Sisi, Long Jia, Ding Han. Leaf water absorption and canopy rainfall interception of twenty-one plant species in Beijing[J]. Journal of Beijing Forestry University, 2020, 42(9): 100-110. DOI: 10.12171/j.1000-1522.20190379
Citation: Wang Sisi, Long Jia, Ding Han. Leaf water absorption and canopy rainfall interception of twenty-one plant species in Beijing[J]. Journal of Beijing Forestry University, 2020, 42(9): 100-110. DOI: 10.12171/j.1000-1522.20190379

Leaf water absorption and canopy rainfall interception of twenty-one plant species in Beijing

More Information
  • Received Date: September 29, 2019
  • Revised Date: March 27, 2020
  • Available Online: September 09, 2020
  • Published Date: September 29, 2020
  •   Objective  The rainfall interception by plant canopy plays an important role in reducing stormwater runoff, and the water absorption performance of plant leaves is closely related to the ability of plant canopy to intercept rainfall.
      Method  In order to evaluate the interception ability of plant canopy, the leaf water absorption, canopy interception quantity and canopy interception volume of 21 plant species in Beijing were calculated by water immersion experiment, field measurement and aerial image analysis.
      Result  Research showed that: (1) the relationship between water absorption and immersion time was logarithmic; (2) the water absorption process of plant leaves can be divided into three stages. The water absorption process of trees and shrubs was similar. The mean water absorption of leaves at 20 min was 0.17 and 0.05 g, respectively; the mean water absorption of leaves at 80 min was 0.18 and 0.06 g, respectively; and the mean water absorption of leaves at 120 min was 0.18 and 0.06 g, respectively. The average water absorption of herb leaves was 0.13 g at 20 min, 0.27 g at 40 min, and 0.21 g at 120 min; (3) the canopy rainfall interception of 11 arbor species was between 71.30 and 738.72 g/m2, and the canopy rainfall interception of 6 shrub species was 41.79−275.28 g/m2, the canopy rainfall interception of 4 herb species ranged from 57.82 to 217.49 g/m2, and the canopy interception of evergreen conifers was significantly higher than that of deciduous broadleaved plants; (4) canopy interception of some shrubs and herbs was higher than that of some arbors, such as Buxus sinica and Iris tectorum; (5) the plant canopy interception volume was positively correlated with canopy cover area and plant canopy interception quantity, the evergreen coniferous tree + evergreen shrub + herb combination had the largest canopy interception volume; (6) the ratio of average annual rainfall interception of the Cedrus deodara +Buxus sinica + Iris tectorum community canopy to the total rainfall was 11.57%, which had a significant interception effect on small rainfall events.
      Conclusion  Different plant types and configurations have an impact on urban green space rainfall interception capacity. This study can provide reference for the construction of high retention capacity plant communities and sponge city green space construction.
  • [1]
    王佳, 王思思, 车伍, 等. 雨水花园植物的选择与设计[J]. 北方园艺, 2012(19):77−81.

    Wang J, Wang S S, Che W, et al. Plant selection and design of rain garden[J]. Northern Horticulture, 2012(19): 77−81.
    [2]
    李俊清. 森林生态学[M]. 北京: 高等教育出版社, 2006: 100−103.

    Li J Q. Forest ecology[M]. Beijing: Higher Education Press, 2006: 100−103.
    [3]
    李晶晶, 白岗栓, 张蕊. 陕北丘陵沟壑区常见树种叶片的吸水性能[J]. 中国水土保持科学, 2013, 11(1):99−102.

    Li J J, Bai G S, Zhang R. Water absorption of common trees leaves in loess hilly and gully region of Northern Shaanxi[J]. Science of Soil and Water Conservation, 2013, 11(1): 99−102.
    [4]
    Huang J Y, Black T A, Jassal R S, et al. Modelling rainfall interception by urban trees[J]. Canadian Water Resources Journal / Revue canadienne des ressources hydriques, 2017, 42(4): 336−348. doi: 10.1080/07011784.2017.1375865
    [5]
    Toba T, Ohta T. Factors affecting rainfall interception determined by a forest simulator and numerical model[J]. Hydrological Processes, 2008, 22(14): 2634−2643. doi: 10.1002/hyp.6859
    [6]
    郭胜男, 林萍, 吴荣, 等. 昆明市园林植物树冠截留降雨及其影响因素研究[J]. 广东农业科学, 2014, 41(23):47−51.

    Guo S N, Lin P, Wu R, et al. Study on canopy interception rainfall of garden plant in Kunming and its influencing factors[J]. Guangdong Agricultural Sciences, 2014, 41(23): 47−51.
    [7]
    李想, 王亚明, 孟晨, 等. 基于幼树模拟降雨实验的树冠动态截留模型[J]. 北京林业大学学报, 2018, 40(4):43−50.

    Li X, Wang Y M, Meng C, et al. A dynamic crown interception model based on simulated rainfall experiments of small trees[J]. Journal of Beijing Forestry University, 2018, 40(4): 43−50.
    [8]
    Návar J. Fitting rainfall interception models to forest ecosystems of Mexico[J]. Journal of Hydrology, 2017, 548: 458−470. doi: 10.1016/j.jhydrol.2017.03.025
    [9]
    Linhoss A C, Siegert C M. A comparison of five forest interception models using global sensitivity and uncertainty analysis[J]. Journal of Hydrology, 2016, 538: 109−116. doi: 10.1016/j.jhydrol.2016.04.011
    [10]
    Návar J. Modeling rainfall interception components of forests: extending drip equations[J]. Agricultural and Forest Meteorology, 2019, 279: 107704. doi: 10.1016/j.agrformet.2019.107704
    [11]
    Junqueira J J A, De Mello C R, De Mello J M, et al. Rainfall partitioning measurement and rainfall interception modelling in a tropical semi-deciduous Atlantic forest remnant[J]. Agricultural and Forest Meteorology, 2019, 275: 170−183. doi: 10.1016/j.agrformet.2019.05.016
    [12]
    Fan J L, Oestergaard K T, Guyot A, et al. Measuring and modeling rainfall interception losses by a native Banksia woodland and an exotic pine plantation in subtropical coastal Australia[J]. Journal of Hydrology, 2014, 515: 156−165. doi: 10.1016/j.jhydrol.2014.04.066
    [13]
    Fathizadeh O, Hosseini S M, Zimmermann A, et al. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands[J]. Science of the Total Environment, 2017, 601−602: 1824−1837. doi: 10.1016/j.scitotenv.2017.05.233
    [14]
    Stringham T K, Snyder K A, Snyder D K, et al. Rainfall interception by single leaf Piñon and Utah Juniper: implications for stand-level effective precipitation[J]. Rangeland Ecology & Management, 2018, 71(3): 327−335.
    [15]
    Ghimire C P, Bruijnzeel L A, Lubczynski M W, et al. Measurement and modeling of rainfall interception by two differently aged secondary forests in upland eastern Madagascar[J]. Journal of Hydrology, 2017, 545: 212−225. doi: 10.1016/j.jhydrol.2016.10.032
    [16]
    Zabret K, Šraj M. Rainfall interception by urban trees and their impact on potential surface runoff[J]. Clean: Soil, Air, Water, 2019, 47(8): 1800327. doi: 10.1002/clen.201800327
    [17]
    车生泉, 于冰沁, 严魏. 海绵城市研究与应用: 以上海城乡绿地建设为例[M]. 上海: 上海交通大学出版社, 2015: 177−178.

    Che S Q, Yu B Q, Yan W. Research and practices for sponge city: taking examples of Shanghai urban and rural green space[M]. Shanghai: Jiaotong University Press, 2015: 177−178.
    [18]
    王文, 诸葛绪霞, 周炫. 植物截留观测方法综述[J]. 河海大学学报(自然科学版), 2010, 38(5):495−504.

    Wang W, Zhuge X X, Zhou X. Methods for plant interception measurement[J]. Journal of Hohai University (Natural Sciences), 2010, 38(5): 495−504.
    [19]
    余开亮. 亚高寒草甸不同退化程度冠层截留容量及其与冠层特征的关系[D]. 兰州: 兰州大学, 2012.

    Yu K L. Canopy rainfall storage capacity related to canopy properties along sub-alpine meadow degradation gradient[D]. Lanzhou: Lanzhou University, 2012.
    [20]
    Garcia-Estringana P, Alonso-Blnso-Estr, Alegre J. Water storage capacity, stemflow and water funneling in Mediterranean shrubs[J]. Journal of Hydrology, 2010, 389(3/4): 363−372.
    [21]
    申晓瑜. 北京常见园林植物叶面积指数模型研究[D]. 北京: 北京林业大学, 2007.

    Shen X Y. Research on the model of leaf area index of common landscape plants in Beijing[M]. Beijing: Beijing Forestry University, 2007.
    [22]
    张毅川. 海绵城市导向下绿地典型下垫面的雨水特征及优化[D]. 武汉: 武汉大学, 2017.

    Zhang Y C. Rainwater characteristics and optimazition of typical inderlying surface of green space under sponge city: taking Xinxiang City as an example[D]. Wuhan: Wuhan University, 2017.
    [23]
    于璐, 苏德荣, 刘艺杉. 3种草坪草叶片的水分吸收特性研究[J]. 北京林业大学学报, 2013, 35(3):97−101.

    Yu L, Su D R, Liu Y S. Characters of leaf water absorption for three turfgrasses[J]. Journal of Beijing Forestry University, 2013, 35(3): 97−101.
    [24]
    康伟健, 刘东焕, 赵世伟, 等. 东北玉簪和白玉簪叶片水分利用效率的差异及原因分析[J]. 植物生理学报, 2017, 53(4):641−648.

    Kang W J, Liu D H, Zhao S W, et al. Causes of differences in water use efficiency between Hosta ensata and H. plantaginea leaves[J]. Plant Physiology Journal, 2017, 53(4): 641−648.
    [25]
    王立新, 李山山. 八宝景天叶片表面润湿性测试与疏水机理分析[J]. 河北科技大学学报, 2018, 39(1):1−8.

    Wang L X, Li S S. Wettability measurement and hydrophobicity mechanism analysis of leaf surface of Hylotelephium erythrostictum[J]. Journal of Hebei University of Science and Technology, 2018, 39(1): 1−8.
    [26]
    牟金磊. 北京市设计暴雨雨型分析[D]. 兰州: 兰州交通大学, 2011.

    Mou J L. Design storm pattern analysis in the city of Beijing[D]. Lanzhou: Lanzhou Jiaotong University, 2011.
    [27]
    游宇, 车伍, 张伟, 等. 8种园林乔木林冠对雨水截留作用的研究[J]. 中国给水排水, 2018, 34(9):121−127.

    You Y, Che W, Zhang W, et al. Effect of rainfall interception by eight species of garden arbors[J]. China Water & Wastewater, 2018, 34(9): 121−127.
    [28]
    陈然, 侯凯翔, 徐众, 等. 徐州市园林植物的冠层雨水截留能力分析[J]. 绿色科技, 2018(3):1−4.

    Chen R, Hou K X, Xu Z, et al. Analysis of canopy rainwater interception capacity of garden plants in Xuzhou City[J]. Journal of Green Science and Technology, 2018(3): 1−4.
    [29]
    刘艳丽, 王全九, 杨婷, 等. 不同植物截留特征的比较研究[J]. 水土保持学报, 2015, 29(3):172−177.

    Liu Y L, Wang Q J, Yang T, et al. Study on interception characteristics of different plants[J]. Journal of Soil and Water Conservation, 2015, 29(3): 172−177.
    [30]
    樊才睿, 李畅游, 贾克力, 等. 不同放牧制度下呼伦湖流域草原植被冠层截留[J]. 生态学报, 2015, 35(14):4716−4724.

    Fan C R, Li C Y, Jia K L, et al. Grass canopy interception of Hulun watershed under different grazing systems[J]. Acta Ecologica Sinica, 2015, 35(14): 4716−4724.
    [31]
    ASCE. Design and construction of urban stormwater management systems[EB/OL]. (1992−10−12)[2019−09−18]. https://www.waterboards.ca.gov/losangeles/water_issues/programs/stormwater/municipal/AdminRecordOrderNoR4_2012_0175/2001LAMS4_AR/Items%20532%20to%20553_reduced.pdf.
    [32]
    白伟岚, 高亦珂, 方翠莲, 等. 一种复层景观草本植物群落的构建方法: 201410108836.3[P]. 2014−06−25.

    Bai W L, Gao Y K, Fang C L, et al. Method for constructing multi-level landscape herb community: 201410108836.3[P]. 2014−06−25.
    [33]
    鲍仁强. 树木在老城区海绵化改造中的应用策略研究[D]. 北京: 北京建筑大学, 2019.

    Bao R Q. Research on the application of urban trees in sponge city construction of old city[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019.
  • Related Articles

    [1]Li Wenhe, Zhao Zhirong, Zhao Qianlong, Wang Qingchun, Li Jinyu, Li Mingyang, Xie Lei. Geographical study on the phylogenetic fauna of vascular plants in Beijing[J]. Journal of Beijing Forestry University, 2024, 46(9): 35-44. DOI: 10.12171/j.1000-1522.20230106
    [2]Ren Yunmao, Wen Zhiyong, Wang Minnan, Li Fan, Jia Zhongkui. Evaluation of forest carbon sequestration capacity in Beijing[J]. Journal of Beijing Forestry University, 2023, 45(12): 108-119. DOI: 10.12171/j.1000-1522.20220436
    [3]Liu Hao, Cui Yueming, Wang Lei, Zhang Danke, Liu Xuehua, Zhang Gangmin. Evaluation on plant diversity in urbanization area of Beijing City[J]. Journal of Beijing Forestry University, 2022, 44(8): 48-55. DOI: 10.12171/j.1000-1522.20210257
    [4]Xu Yiding, Yang Zilei, Li Yunyuan. Construction method of ventilation corridor woodland in urban fringe area of Beijing: taking the Heizhuanghu District as an example[J]. Journal of Beijing Forestry University, 2020, 42(2): 135-148. DOI: 10.12171/j.1000-1522.20190002
    [5]Liang Yongqi, Li Mingze, Yang Ruixia, Geng Tong, Li Huan. Effects of different filter algorithms on deriving leaf area index (LAI)[J]. Journal of Beijing Forestry University, 2020, 42(1): 54-64. DOI: 10.12171/j.1000-1522.20180268
    [6]Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. DOI: 10.13332/j.1000-1522.20170468
    [7]Zhang Cai, Zha Tianshan, Jia Xin, Liu Peng, Li Cheng. Dynamics and simulation of leaf area index for Artemisia ordosica community in the Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(3): 75-83. DOI: 10.13332/j.1000-1522.20170298
    [8]WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204
    [9]PAN Qiang, FAN Wen-yi, YU Hai-qun, ZHANG Feng, ZHANG Yang-jian. Temporal and spatial variation of normalized difference vegetation index and its influencing factors in Beijing[J]. Journal of Beijing Forestry University, 2012, 34(2): 26-33.
    [10]MA LÜ-yi, WANG Xi-qun, GAN Jing, CAI Bao-jun. Basic principles of forest management in Beijing[J]. Journal of Beijing Forestry University, 2006, 28(4): 159-163.
  • Cited by

    Periodical cited type(3)

    1. 王丹,盖立新,田恒玖,蒋健,范雅倩,张洪亮,吴记贵. 北京松山国家级自然保护区野生兰科植物多样性及其生存状况研究. 自然保护地. 2022(01): 93-101 .
    2. 沐先运,童玲,雷丰玮,沈雪梨,马頔. 北京市被子植物新记录科与兰科新记录种. 首都师范大学学报(自然科学版). 2022(05): 31-34 .
    3. 李国权. 河北省被子植物新资料. 河北科技师范学院学报. 2018(03): 22-23+39 .

    Other cited types(0)

Catalog

    Article views (1968) PDF downloads (131) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return