• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Lei Shanqing, Wang Wenjuan, Xu Yixin, Wang Yuchen, Chen Lijun, Du Zhiqiang, Li Jingwen. Tamarix ramosissima changes the responses of root morphology of Populus euphratica seedlings to various soil water and salinity conditions[J]. Journal of Beijing Forestry University, 2020, 42(7): 89-97. DOI: 10.12171/j.1000-1522.20190441
Citation: Lei Shanqing, Wang Wenjuan, Xu Yixin, Wang Yuchen, Chen Lijun, Du Zhiqiang, Li Jingwen. Tamarix ramosissima changes the responses of root morphology of Populus euphratica seedlings to various soil water and salinity conditions[J]. Journal of Beijing Forestry University, 2020, 42(7): 89-97. DOI: 10.12171/j.1000-1522.20190441

Tamarix ramosissima changes the responses of root morphology of Populus euphratica seedlings to various soil water and salinity conditions

More Information
  • Received Date: December 02, 2019
  • Revised Date: March 28, 2020
  • Available Online: July 08, 2020
  • Published Date: August 13, 2020
  •   Objective  Root is the key organ for Populus euphratica to colonize and regenerate in the field. In this study, we investigated the responses of root growth to soil conditions and biological factors to provide support for further study on adaptive strategy of Populus euphratica seedlings and provide a theoretical basis for protection management of Populus euphratica forests in northwestern arid area of China.
      Method  Here, a controlled pot experiment was conducted to study the responses of root morphological features of annual Populus euphratica seedlings to interspecific competitor under 3 levels of water and salinity and their interactive effects.
      Result  (1) Under various levels of water and salinity, roots mainly for absorption (diameter under 5 mm) and for anchoring (above 5 mm) maintained stable proportions, indicating a conservative root morphology of annual Populus euphratica seedlings. But interspecific competition with Tamarix ramosissima changed this property. (2) Annual Populus euphratica seedlings had larger special root length and special root area while growing with Tamarix ramosissima seedlings, which meant higher absorbing ability in mixed planting pattern. However, total root volume, root surface area and basal diameter significantly dropped compared with those grew with intraspecific individuals, demonstrating neighboring Tamarix ramosissima seedlings could intensively restrict root growth of annual Populus euphratica seedlings. (3) Water condition and neighbor had more significant effects on root growth of Populus euphratica seedlings instead of salinity condition. Neighboring Tamarix ramosissima seedlings could change root plastic responses of Populus euphratica seedlings to water and salinity, making Populus euphratica seedlings more vulnerable to salinity stress.
      Conclusion  In summary, root morphology of annual Populus euphratica seedlings shows adaptive strategy while competing with neighboring Tamarix ramosissima seedlings, but still interspecific competition leads to harmful outcomes for growth of Populus euphratica. For seedlings growing on floodplain, interspecific competition may also be a major threat to their survival.
  • [1]
    王世绩. 全球胡杨林的现状及保护和恢复对策[J]. 世界林业研究, 1996(6):37−44.

    Wang S J. The status, conservation and recovery of global resources of Populus euphradica[J]. World Forestry Research, 1996(6): 37−44.
    [2]
    田永祯, 司建华, 程业森, 等. 荒漠河谷胡杨残林复壮更新试验研究[J]. 干旱区资源与环境, 2009, 23(9):155−159.

    Tian Y Z, Si J H, Cheng Y S, et al. Experimental study on rejuvenation and regeneration of residual Populus euphradica forest in desert valley[J]. Journal of Arid Land Resources and Environment, 2009, 23(9): 155−159.
    [3]
    李俊清, 卢琦, 褚建民, 等. 额济纳绿洲胡杨林研究[M]. 北京: 科学出版社, 2009.

    Li J Q, Lu Q, Chu J M, et al. Research of Populus euphradica forest in Ejina Oasis[M]. Beijing: Science Press, 2009.
    [4]
    吕爽. 胡杨幼苗地上地下生长特性对水土条件的响应[D]. 北京: 北京林业大学, 2015.

    Lü S. The effects of water and soil environment on the growth of Populus euphradica seedlings[D]. Beijing: Beijing Forestry University, 2015.
    [5]
    华鹏. 胡杨实生苗在河漫滩自然发生和初期生长的研究[J]. 新疆环境保护, 2003, 25(4):14−17. doi: 10.3969/j.issn.1008-2301.2003.04.004

    Hua P. Studies on seed germination and seeding early growth of Populus euphratica on the flood plain[J]. Environmental Protection of Xinjiang, 2003, 25(4): 14−17. doi: 10.3969/j.issn.1008-2301.2003.04.004
    [6]
    韩路, 王海珍, 牛建龙, 等. 荒漠河岸林胡杨群落特征对地下水位梯度的响应[J]. 生态学报, 2017, 37(20):6836−6846.

    Han L, Wang H Z, Niu J L, et al. Response of Populus euphratica communities in a desert riparian forest to the groundwater level gradient in the Tarim Basin[J]. Acta Ecologica Sinica, 2017, 37(20): 6836−6846.
    [7]
    王丽娟. 胡杨(Populus euphratica)幼苗根系生长特征及影响因素研究[D]. 乌鲁木齐: 新疆大学, 2015.

    Wang L J. Study on the root growth characteristics of Populus euphratica and influencing factors[D]. Urumchi: Xinjiang University, 2015.
    [8]
    年雁云, 王晓利, 蔡迪花. 黑河流域下游额济纳三角洲气候及生态环境变化分析[J]. 干旱气象, 2015, 33(1):28−37.

    Nian Y Y, Wang X L, Cai D H. Analysis on climate and ecological environment change in the Ejina Delta, the lower reaches of the Heihe River[J]. Journal of Arid Meteorology, 2015, 33(1): 28−37.
    [9]
    鱼腾飞, 冯起, 刘蔚, 等. 黑河下游土壤水盐对生态输水的响应及其与植被生长的关系[J]. 生态学报, 2012, 32(22):7009−7017. doi: 10.5846/stxb201110101484

    Yu T F, Feng Q, Liu W, et al. Soil water and salinity in response to water deliveries and the relationship with plant growth at the lower reaches of Heihe River, northwestern China[J]. Acta Ecologica Sinica, 2012, 32(22): 7009−7017. doi: 10.5846/stxb201110101484
    [10]
    张玉波. 极干旱地区绿洲植被退化过程中胡杨繁殖特性研究[D]. 北京; 北京林业大学, 2005.

    Zhang Y B. Populus euphratica reproduction characteristics of a degradation oasis vegetation in the extreme arid regions[D]. Beijing: Beijing Forestry University, 2005.
    [11]
    张昊. 额济纳绿洲胡杨种群生活史对策研究[D]. 北京: 北京林业大学, 2006.

    Zhang H. Life history strategies of Populus euphratica Oliv. population in the Ejina Oasis of Inner Mongolia[D]. Beijing: Beijing Forestry University, 2006.
    [12]
    武逢平. 额济纳荒漠绿洲胡杨繁殖特性的研究[D]. 北京: 北京林业大学, 2007.

    Wu F P. Reproductive characteristics of Populus euphratica Oliv. in Ejina Oasis[D]. Beijing: Beijing Forestry University, 2007.
    [13]
    Li H, Liu B, McCormack M L, et al. Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient[J]. New Phytologist, 2017, 216(4): 1140−1150. doi: 10.1111/nph.14710
    [14]
    Beidler K V, Taylor B N, Strand A E, et al. Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies[J]. New Phytologist, 2015, 205(3): 1153−1163. doi: 10.1111/nph.13123
    [15]
    吕爽, 张现慧, 张楠, 等. 胡杨幼苗根系生长与构型对土壤水分的响应[J]. 西北植物学报, 2015, 35(5):1005−1012. doi: 10.7606/j.issn.1000-4025.2015.05.1005

    Lü S, Zhang X H, Zhang N, et al. Response of root growth and architecture of Populus euphratica seedling on soil water[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5): 1005−1012. doi: 10.7606/j.issn.1000-4025.2015.05.1005
    [16]
    Ye Z, Wang J, Wang W, et al. Effects of root phenotypic changes on the deep rooting of Populus euphratica seedlings under drought stresses[J/OL]. PeerJ, 2019, 7: e6513(2019−02−28)[2019−03−11]. https://doi.org/10.7717/peerj.6513.
    [17]
    Wang L, Zhao C, Li J, et al. Root plasticity of Populus euphratica seedlings in response to different water table depths and contrasting sediment types[J/OL]. PLoS ONE, 2015, 10(3): e118691(2015−03−05)[2018−12−15]. https://doi.org/10.1371/journal.pone.0118691.
    [18]
    单立山, 苏铭, 张正中, 等. 不同生境下荒漠植物红砂−珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4):475−486. doi: 10.17521/cjpe.2017.0300

    Shan L S, Su M, Zhang Z Z, et al. Vertical distribution pattern of mixed root systems of desert plants Reaumuria soongarica and Salsola passerina under different environmental gradients[J]. Chinese Journal of Plant Ecology, 2018, 42(4): 475−486. doi: 10.17521/cjpe.2017.0300
    [19]
    Rewald B, Leuschner C. Does root competition asymmetry increase with water availability?[J]. Plant Ecology & Diversity, 2009, 2(3): 255−264.
    [20]
    Poulos J M, Rayburn A P, Schupp E W. Simultaneous, independent, and additive effects of shrub facilitation and understory competition on the survival of a native forb (Penstemon palmeri)[J]. Plant Ecology, 2014, 215(4): 417−426. doi: 10.1007/s11258-014-0312-4
    [21]
    张雪妮, 吕光辉, 杨晓东, 等. 基于盐分梯度的荒漠植物多样性与群落、种间联接响应[J]. 生态学报, 2013, 33(18):5714−5722. doi: 10.5846/stxb201306071403

    Zhang X N, Lü G H, Yang X D, et al. Responses of desert plant diversity, community and interspecific association to soil salinity gradient[J]. Acta Ecologica Sinica, 2013, 33(18): 5714−5722. doi: 10.5846/stxb201306071403
    [22]
    赵峰侠, 尹林克. 荒漠内陆河岸胡杨和多枝柽柳幼苗种群空间分布格局及种间关联性[J]. 生态学杂志, 2007, 26(7):972−977. doi: 10.3321/j.issn:1000-4890.2007.07.002

    Zhao F X, Yin L K. Spatial distribution pattern and interspecific association of Populus euphratica and Tamarix ramosissima seedlings populations along desert inland river[J]. Chinese Journal of Ecology, 2007, 26(7): 972−977. doi: 10.3321/j.issn:1000-4890.2007.07.002
    [23]
    Wu G, Jiang S, Liu W, et al. Competition between Populus euphratica and Tamarix ramosissima seedlings under simulated high groundwater availability[J]. Journal of Arid Land, 2016, 8(2): 293−303. doi: 10.1007/s40333-015-0019-y
    [24]
    刘倩雯. 额济纳绿洲胡杨种子萌发及幼苗生长影响因子[D]. 北京: 北京林业大学, 2011.

    Liu Q W. The effects of factors on seed germination and seedling growth of Populus euphratica in Ejina Oasis[D]. Beijing: Beijing Forestry University, 2011.
    [25]
    周朝彬, 宋于洋, 王炳举, 等. 干旱胁迫对胡杨光合和叶绿素荧光参数的影响[J]. 西北林学院学报, 2009, 24(4):5−9.

    Zhou C B, Song Y Y, Wang B J, et al. Effects of drought stress on photosynthesis and chlorophyll fluorescence parameters of Populus euphratica[J]. Journal of Northwest Forestry University, 2009, 24(4): 5−9.
    [26]
    李志军, 罗青红, 伍维模, 等. 干旱胁迫对胡杨和灰叶胡杨光合作用及叶绿素荧光特性的影响[J]. 干旱区研究, 2009, 26(1):45−52.

    Li Z J, Luo Q H, Wu W M, et al. The effects of drought stress on photosynthetic and chlorophyll fluorescence characteristics of Populus euphratica and P. pruinosa[J]. Arid Zone Research, 2009, 26(1): 45−52.
    [27]
    王东健, 陈其凌, 李铭, 等. 胡杨不同生长阶段的耐盐性[J]. 新疆林业, 1998(4):9−10.

    Wang D J, Chen Q L, Li M, et al. Salt tolerance of Populus euphratica in various growth phase[J]. Forestry of Xinjiang, 1998(4): 9−10.
    [28]
    李菊艳, 赵成义, 闫映宇, 等. 盐分对胡杨幼苗生长及光合特性的影响[J]. 中国沙漠, 2010, 30(1):80−86.

    Li J Y, Zhao C Y, Yan Y Y, et al. Effects of salt on the growth and photosynthetic characteristics of Populus euphratica seedlings[J]. Journal of Desert Research, 2010, 30(1): 80−86.
    [29]
    周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015, 39(1):81−91. doi: 10.17521/cjpe.2015.0009

    Zhou H H, Li W H. Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica[J]. Chinese Journal of Plant Ecology, 2015, 39(1): 81−91. doi: 10.17521/cjpe.2015.0009
    [30]
    马焕成, 王沙生. 盐胁迫下胡杨的离子响应[J]. 西南林学院学报, 1998, 18(1):43−48.

    Ma H C, Wang S S. Ion response of P. euphratica to salt stress[J]. Journal of Southwest Forestry College, 1998, 18(1): 43−48.
    [31]
    Azizi S, Tabari M, Striker G G. Growth, physiology, and leaf ion concentration responses to long-term flooding with fresh or saline water of Populus euphratica[J]. South African Journal of Botany, 2017, 108: 229−236. doi: 10.1016/j.sajb.2016.11.004
    [32]
    Weiss L, Schalow L, Jeltsch F, et al. Experimental evidence for root competition effects on community evenness in one of two phytometer species[J]. Journal of Plant Ecology, 2019, 12(2): 281−291. doi: 10.1093/jpe/rty021
    [33]
    Herms D A, Mattson W J. The dilemma of plants: to grow or defend[J]. The Quarterly Review of Biology, 1992, 67(3): 283−335. doi: 10.1086/417659
    [34]
    Toca A, Oliet J A, Villar-Salvador P, et al. Ecologically distinct pine species show differential root development after outplanting in response to nursery nutrient cultivation[J]. Forest Ecology and Management, 2019, 451: 117562. doi: 10.1016/j.foreco.2019.117562
    [35]
    周永姣, 程林, 王满堂, 等. 武夷山不同海拔黄山松细根性状季节变化[J]. 生态学报, 2019, 9(12):4530−4539.

    Zhou Y J, Cheng L, Wang M T, et al. Seasonal changes of fine root traits in Pinus taiwanensis Hayata at different altitudes in the Wuyi Mountains[J]. Acta Ecologica Sinica, 2019, 9(12): 4530−4539.
    [36]
    王来, 高鹏翔, 仲崇高, 等. 核桃-小麦复合系统中细根生长动态及竞争策略[J]. 生态学报, 2018, 38(21):7762−7771.

    Wang L, Gao P X, Zhong C G, et al. Growth dynamics and competitive strategies of fine roots in a walnut-wheat agroforestry system[J]. Acta Ecologica Sinica, 2018, 38(21): 7762−7771.
    [37]
    张楠, 杨雪芹, 曹德昌, 等. 土壤水肥因子对胡杨幼苗生长权衡和木质化的影响[J]. 西北植物学报, 2013, 33(4):771−779. doi: 10.3969/j.issn.1000-4025.2013.04.019

    Zhang N, Yang X Q, Cao D C, et al. Soil water and fertilizer factors on the trade-off of growth and lignification of Populus euphratica seedling[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(4): 771−779. doi: 10.3969/j.issn.1000-4025.2013.04.019
    [38]
    陈斌, 刘茂松, 黄峥, 等. 西北干旱区灌草型白刺−芨芨草群落根系分布与互作[J]. 生态学杂志, 2017, 36(10):2692−2698.

    Chen B, Liu M S, Huang Z, et al. Root distribution and interaction in a Nitraria tangutorum-Achnatherum splendens (shrub-grass) community in arid Northwest China[J]. Chinese Journal of Ecology, 2017, 36(10): 2692−2698.
    [39]
    Bertness M D, Callaway R. Positive interactions in communities[J]. Trends in Ecology & Evolution, 1994, 9(5): 191−193.
    [40]
    Belter P R, Cahill J F. Disentangling root system responses to neighbours: identification of novel root behavioural strategies[J/OL]. AoB Plants, 2015, 7: 59(2015−05−27)[2017−02−21]. https://doi.org/10.1093/aobpla/plv059.
    [41]
    Thorpe A S, Aschehoug E T, Atwater D Z, et al. Interactions among plants and evolution[J]. Journal of Ecology, 2011, 99(3): 729−740. doi: 10.1111/j.1365-2745.2011.01802.x
  • Cited by

    Periodical cited type(6)

    1. 莫崇杏,董明亮,李荣生,余纽,郑显澄,杨锦昌. 米老排杂交子代苗期生长性状遗传变异及选择. 森林与环境学报. 2023(05): 555-560 .
    2. Shuchun Li,Jiaqi Li,Yanyan Pan,Xiange Hu,Xuesong Nan,Dan Liu,Yue Li. Variation analyses of controlled pollinated families and parental combining ability of Pinus koraiensis. Journal of Forestry Research. 2021(03): 1005-1011 .
    3. 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版). 2019(02): 14-22 .
    4. 秦光华,宋玉民,乔玉玲,于振旭,彭琳. 旱柳苗高年生长与气象因子的灰色关联度. 东北林业大学学报. 2019(05): 42-45+51 .
    5. 李峰卿,陈焕伟,周志春,楚秀丽,徐肇友,肖纪军. 红豆树优树种子和幼苗性状的变异分析及优良家系的初选. 植物资源与环境学报. 2018(02): 57-65 .
    6. 张素芳,张磊,赵佳丽,张莉,张含国. 长白落叶松小RNA测序和其靶基因预测. 北京林业大学学报. 2016(12): 64-72 . 本站查看

    Other cited types(6)

Catalog

    Article views (1810) PDF downloads (61) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return