• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guan Zhuizhui, Zhang Yandong. Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot[J]. Journal of Beijing Forestry University, 2020, 42(8): 53-60. DOI: 10.12171/j.1000-1522.20200004
Citation: Guan Zhuizhui, Zhang Yandong. Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot[J]. Journal of Beijing Forestry University, 2020, 42(8): 53-60. DOI: 10.12171/j.1000-1522.20200004

Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot

More Information
  • Received Date: January 04, 2020
  • Revised Date: April 14, 2020
  • Available Online: July 14, 2020
  • Published Date: September 06, 2020
  •   Objective  The study aims to explore the spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot, and establish the predicting model of discoloration length of knot.
      Method  We selected 16 F. mandshurica sample trees from artificial mixed forests of 49-year-old F. mandshurica and Larix olgensis, and dissected knots with a chainsaw and measured the knot properties using a 20 × magnifying glass in the laboratory.
      Result  (1) The number of formed knots from 1st to 5th radial growth year accounted for the most, reaching 98.1%; the number of dead knots formed from 6th to 15th year accounted for 94.1%; the number of completely occluding knots from 11th to 20th year accounted for 73.6%. (2) 89.5% knots located below 10.0 m, and 10.5% knots located between 10.1 and 14.0 m of trunk height in the vertical distribution. (3) The discoloration length of knot increased with the increase of knot diameter. When the knot diameter was greater than 15.00 mm, the discoloration length of knot increased significantly. (4) The discoloration length of knot significantly decreased with the increase of insertion angle of knot (P < 0.05), but significantly increased with the increase of radius of dead knot and the occlusion time of knot (P < 0.05). (5) The study filtered three key factors, i.e. knot diameter (KD), total radius of knot (TRK) and occlusion time of knot (OT) , to establish a multiple regression model of the discoloration length of knot by the stepwise regression method: YDL = 1.557XKD + 0.382XTRK + 1.140XOT − 7.523. The correlation reached a significant level.
      Conclusion  Under the condition of natural pruning, F. mandshurica knot discolors easily. KD, TRK and OT are key factors affecting the discoloration length of knot. When the knot diameter exceeds 15.00 mm, the discoloration length of knot increases significantly. Therefore, when the branch diameter of F. mandshurica exceeds 15.00 mm, pruning should be taken in time.
  • [1]
    Sohngen B, Mendelsohn R, Sedjo R. A global model of climate change impacts on timber markets[J]. Journal of Agricultural and Resource Economics, 2001, 26(2): 326−343.
    [2]
    Mäkinen H. Effect of stand density on the branch development of silver birch (<italic>Betula pendula</italic> Roth) in central Finland[J]. Trees, 2002, 16(4): 346−353. doi: 10.1007/s00468-002-0162-x
    [3]
    Alcorn P J, Bauhus J, Thomas D S, et al. Photosynthetic response to green crown pruning in young plantation-grown <italic>Eucalyptus pilularis</italic> and <italic>E. cloeziana</italic>[J]. Forest Ecology and Management, 2008, 255(11): 3827−3838. doi: 10.1016/j.foreco.2008.03.030
    [4]
    Lowell E C, Maguire D A, Briggs D G, et al. Effects of silviculture and genetics on branch/knot attributes of coastal pacific northwest Douglas-fir and implications for wood quality:a synthesis[J]. Forests, 2014, 5(7): 1717−1736. doi: 10.3390/f5071717
    [5]
    Vestøl G I, Høibø O A. Prediction of knot diameter in <italic>Picea abies</italic> (L.) Karst[J]. Holz Als Roh-Und Werkstoff, 2001, 59(1−2): 129−136.
    [6]
    Hein S, Spiecker H. Comparative analysis of occluded branch characteristics for <italic>Fraxinus excelsior</italic> and <italic>Acer pseudoplatanus</italic> with natural and artificial pruning[J]. Canadian Journal of Forest Research, 2007, 37(8): 1414−1426. doi: 10.1139/X06-308
    [7]
    Hein S. Knot attributes and occlusion of naturally pruned branches of <italic>Fagus sylvatica</italic>[J]. Forest Ecology and Management, 2008, 256(12): 2046−2057. doi: 10.1016/j.foreco.2008.07.033
    [8]
    Wang C S, Zhao Z G, Hein S, et al. Effect of planting density on knot attributes and branch occlusion of <italic>Betula alnoides</italic> under natural pruning in southern China[J]. Forests, 2015, 6(12): 1343−1361.
    [9]
    Hemery G, Spiecker H, Aldinger E, et al. COST Action E42 : growing valuable broadleaved tree species[R/OL]. Berlin: ResearchGate, 2008[2019−12−25]. https://www.researchgate.net/publication/235710146.
    [10]
    Oosterbaan A, Hochbichler E, Nicolescu V N, et al. Silvicultural principles, goals and measures in growing valuable broadleaved tree species[J]. Die Bodenkultur, 2009, 60(3): 45−51.
    [11]
    Gerrand A M, Neilsen W A, Medhurst J L. Thinning and pruning eucalypt plantations for sawlog production in Tasmania[J]. Tasforests, 1997, 9: 15−34.
    [12]
    Wardlaw T J, Neilsen W A. Decay and other defects associated with pruned branches of <italic>Eucalyptus nitens</italic>[J]. Tasforests, 1999, 11: 49−57.
    [13]
    Wiseman D, Smethurst P, Pinkard L, et al. Pruning and fertiliser effects on branch size and decay in two <italic>Eucalyptus nitens</italic> plantations[J]. Forest Ecology and Management, 2006, 225(1): 123−133.
    [14]
    Sandi M, Sandi W, Nicolescu V N. Wood discoloration in relation to wound size in northern red oak (<italic>Quercus rubra</italic> L.) trees subject to artificial pruning[J]. Spanish Journal of Rural Development, 2012, 3(1): 53−60.
    [15]
    Metzler B. Quantitative assessment of fungal colonization in Norway spruce after green pruning[J]. Forest Pathology, 1997, 27(1): 1−11. doi: 10.1111/j.1439-0329.1997.tb00848.x
    [16]
    Dănescu A, Ehring A, Bauhus J, et al. Modelling discoloration and duration of branch occlusion following green pruning in <italic>Acer pseudoplatanus</italic> and <italic>Fraxinus excelsior</italic>[J]. Forest Ecology and Management, 2015, 335: 87−98. doi: 10.1016/j.foreco.2014.09.027
    [17]
    Wang C S, Hein S, Zhao Z G, et al. Branch occlusion and discoloration of <italic>Betula alnoides</italic> under artificial and natural pruning[J]. Forest Ecology and Management, 2016, 375: 200−210. doi: 10.1016/j.foreco.2016.05.027
    [18]
    Mäkinen H, Ojansuu R, Sairanen P, et al. Predicting branch characteristics of Norway spruce (<italic>Picea abies</italic> (L.) Karst.) from simple stand and tree measurements[J]. Forestry, 2003, 76(5): 525−546. doi: 10.1093/forestry/76.5.525
    [19]
    Petruncio M, Briggs D, Barbour R J. Predicting pruned branch stub occlusion in young, coastal Douglas-fir[J]. Canadian Journal of Forest Research, 1997, 27(7): 1074−1082. doi: 10.1139/x97-037
    [20]
    Trincado G, Burkhart H E. A framework for modeling the dynamics of first-order branches and spatial distribution of knots in loblolly pine trees[J]. Canadian Journal of Forest Research, 2009, 39(39): 566−579. doi: 10.1139/X08-189
    [21]
    Grotta A T, Gartner B L, Radosevich S R. Influence of species proportion and timing of establishment on stem quality in mixed red alder and Douglas-fir plantations[J]. Canadian Journal of Forest Research, 2004, 34(4): 863−873. doi: 10.1139/x03-259
    [22]
    陈东升, 孙晓梅, 李凤日, 等. 落叶松人工林节子内部特征变化规律研究[J]. 北京林业大学学报, 2015, 37(2):16−23.

    Chen D S, Sun X M, Li F R, et al. Changes of the internal characteristics of knots in larch plantation[J]. Journal of Beijing Forestry University, 2015, 37(2): 16−23.
    [23]
    Qin G M, Hao J, Yang J C, et al. Branch occlusion and discoloration under the natural pruning of Mytilaria laosensis[J/OL]. Forests, 2019, 10(10): 892 [2019−12−10]. https://www.researchgate.net/publication/336403320.
    [24]
    范志强, 沈海龙, 王庆成, 等. 水曲柳幼林适生立地条件研究[J]. 林业科学, 2002, 38(2):38−43. doi: 10.3321/j.issn:1001-7488.2002.02.008

    Fan Z Q, Shen H L, Wang Q C, et al. Study on the site conditions suitable for young plantation of <italic>Fraxinus mandshurica</italic>[J]. Scientia Silvae Sinicae, 2002, 38(2): 38−43. doi: 10.3321/j.issn:1001-7488.2002.02.008
    [25]
    郝玉琢, 王树力. 水曲柳人工纯林与混交林土壤生态化学计量特征的比较[J]. 东北林业大学学报, 2018, 46(3):54−58.

    Hao Y Z, Wang S L. Soil ecological stoichiometric characteristics between pure <italic>Fraxinus mandshurica</italic> plantation and mixed <italic>F. mandshurica</italic> plantation[J]. Journal of Northeast Forestry University, 2018, 46(3): 54−58.
    [26]
    那萌, 刘婷岩, 张彦东, 等. 林分密度对水曲柳人工林碳储量的影响[J]. 北京林业大学学报, 2017, 39(1):20−26.

    Na M, Liu T Y, Zhang Y D, et al. Effects of stock density on carbon storage in <italic>Fraxinus mandshurica</italic> plantations[J]. Journal of Beijing Forestry University, 2017, 39(1): 20−26.
    [27]
    郝建, 蒙明君, 黄德卫, 等. 格木人工林节子的分布特征及预测模型[J]. 南京林业大学学报(自然科学版), 2017, 41(3):100−104.

    Hao J, Meng M J, Huang D W, et al. Distribution and statistical analysis of knots in <italic>Erythrophleum fordii</italic> plantations[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(3): 100−104.
    [28]
    Hein S, Weiskittel A R, Kohnle U. Effect of wide spacing on tree growth, branch and sapwood properties of young Douglas-fir (<italic>P</italic>s<italic>eudotsuga menziesii</italic> (Mirb.) Franco) in south-western Germany[J]. European Journal of Forest Research, 2008, 127(6): 481−493.
    [29]
    Weiskittel A R, Maguire D A, Monserud R A. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: implications for predicting tree growth[J]. Forest Ecology and Management, 2007, 251(3):182-194.
    [30]
    王春胜. 西南桦人工中幼林密度效应和修枝研究[D]. 北京: 中国林业科学研究院, 2015.

    Wang C S. Studies on the effect of planting density and artificial pruning on young and middle aged Betula alnoides plantation[D]. Beijing: Chinese Academy of Forestry, 2015.
    [31]
    Forrester D I, Baker T G. Growth responses to thinning and pruning in <italic>Eucalyptus globulus</italic>, <italic>Eucalyptus nitens</italic>, and <italic>Eucalyptus grandis</italic> plantations in southeastern Australia[J]. Canadian Journal of Forest Research, 2012, 42(1): 75−87. doi: 10.1139/x11-146
    [32]
    Forrester D I, Collopy J J, Beadle C L, et al. Effect of thinning, pruning and nitrogen fertiliser application on light interception and light-use efficiency in a young <italic>Eucalyptus nitens</italic> plantation[J]. Forest Ecology and Management, 2013, 288: 21−30.
    [33]
    Wang C S, Zeng J, Hein S, et al. Crown and branch attributes of mid-aged <italic>Betula alnoides</italic> plantations in response to planting density[J]. Scandinavian Journal of Forest Research, 2017, 32(8): 679−687. doi: 10.1080/02827581.2016.1261936
    [34]
    Wang C S, Tang C, Hein S, et al. Branch development of five-year-old Betula alnoides plantations in response to planting density[J/OL]. Forests, 2018, 9(1): 42[2019−12−10]. https://www.sci-hub.pl/10.3390/f9010042.
    [35]
    王志海, 尹光天, 杨锦昌, 等. 不同造林密度对米老排人工林枝条发育的影响[J]. 林业科学研究, 2019, 32(2):78−86.

    Wang Z H, Yin G T, Yang J C, et al. Effects of planting density on branch development of <italic>Mytilaria laosensis</italic> plantations[J]. Forest Research, 2019, 32(2): 78−86.
  • Related Articles

    [1]Hu Zhenhong, Zhao Zhuqi, He Xian, Yuan Mengfan, Cheng Lei. Research progress of impacts of tree species diversity on microbial decomposition of forest deadwood and carbon cycling[J]. Journal of Beijing Forestry University, 2024, 46(11): 1-9. DOI: 10.12171/j.1000-1522.20240233
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437
    [4]He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185
    [5]Tong Long, Zhang Lei, Li Bin, Geng Yanghui, Xie Jinzhong, Zhang Wei, Chen Lijie. Effects of different truncation treatments on the stoichiometry of C, N and P in leaves of Dendrocalamus latiflorus[J]. Journal of Beijing Forestry University, 2018, 40(11): 69-75. DOI: 10.13332/j.1000--1522.20180216
    [6]ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. DOI: 10.13332/j.1000-1522.20170089
    [7]ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411
    [8]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
    [9]XIAO Yang, CHEN Li-hua, YU Xin-xiao, WANG Xiao-ping, QIN Yong-sheng, CHEN Jun-qi. Nutrient cycling of N, P and K in a plantation ecosystem of Pinus tabulaeformis in Miyun District, Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 72-75.
    [10]YU Zhan-yuan, CENG De-hui, JIANG Feng-qi, FAN Zhi-ping, CHEN Fu-sheng, ZHAO Qiong. Responses of key carbon cycling processes to the addition of water and fertilizers to sandy grassland in semi-arid region[J]. Journal of Beijing Forestry University, 2006, 28(4): 45-50.
  • Cited by

    Periodical cited type(35)

    1. 沈汉,郑成忠,张能军,邱勇斌,徐金良,成向荣. 间伐对杉木大径材培育林分的生长和乔木碳储量的影响. 东北林业大学学报. 2025(04): 47-54+60 .
    2. 高彤,宋鑫彧,任允泽,毛亮亮,高然,董希斌. 抚育间伐强度对针阔混交林碳动态变化的影响. 中南林业科技大学学报. 2024(02): 118-128 .
    3. 牛鉴祺,吕彦飞,王树力. 抚育间伐对杨桦次生林非结构性碳水化合物质量分数和碳氮磷生态化学计量特征的影响. 东北林业大学学报. 2024(06): 51-57 .
    4. 赵鹏,刘子玺,李得禄,张俊年,张万科,肖东,杨斌元. 祁连山国家公园典型生态系统固碳功能研究综述. 陕西林业科技. 2024(02): 127-131+134 .
    5. 吴章明,唐思莹,宋思宇,李聪,刘丽鸽,朱鹏,徐红伟,张学强,张健,刘洋. 带状采伐初期对华西雨屏区杉木人工林土壤碳组分及稳定性的影响. 四川农业大学学报. 2024(04): 847-860+878 .
    6. 吕彦飞,牛鉴祺,王树力. 抚育间伐对小黑杨人工林非结构性碳和氮磷钾生态化学计量特征的影响. 森林工程. 2024(05): 62-73 .
    7. 邹丰虎,柴宗政. 近自然经营对马尾松人工林生态系统碳储量的影响. 广西科学. 2024(03): 405-415 .
    8. 赵吉平. 不同结构落叶松天然林生物量及生产力特征. 南方农业. 2023(04): 101-104 .
    9. 高谢雨,董利虎,郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响. 南京林业大学学报(自然科学版). 2023(06): 85-94 .
    10. 杜雪,王海燕,邹佳何,孟海,赵晗,崔雪,董齐琪. 长白山北坡云冷杉阔叶混交林土壤有机碳分布特征及其影响因素. 生态环境学报. 2022(04): 663-669 .
    11. 肖军,雷蕾,曾立雄,李肇晨,马成功,肖文发. 不同经营模式对华北油松人工林碳储量的影响. 生态环境学报. 2022(11): 2134-2142 .
    12. 张乃暄,王韵頔,许中旗,付立华,张菲,程顺. 抚育间伐对塞罕坝地区云杉人工林碳储量及固碳速率的影响. 河北农业大学学报. 2022(06): 81-87 .
    13. 王亚辉,牟长城,杨智慧,刘珽,李轩男. 透光抚育强度对小兴安岭“栽针保阔”红松林碳储量的影响. 北京林业大学学报. 2021(10): 54-64 . 本站查看
    14. 赵状,董希斌,曲杭峰,宋鑫彧,刘慧,毛亮亮. 可拓评判法在红皮云杉碳质量分数评价中的应用. 东北林业大学学报. 2021(10): 71-76 .
    15. 陈俊华,张鑫,谢天资,龚固堂,王琛,慕长龙. 川中丘陵区人工柏木林不同间伐强度效果评价. 四川林业科技. 2021(06): 11-20 .
    16. 南维波. 不同抚育强度对兴安落叶松人工林的影响. 农村实用技术. 2020(06): 121-122 .
    17. 徐清乾,黄帆,张勰,王湘莹,梁贵明. 雪峰山区杉木大径材培育立地及密度控制研究. 湖南林业科技. 2020(03): 32-38 .
    18. 龚映匀,王瑞辉,张斌,刘凯利,董凯丽,刘俊涛,赵苏亚,周钰淮. 抚育间伐对川西柳杉人工林生长和土壤有机碳的影响. 林业资源管理. 2020(06): 96-104 .
    19. 宋重升,张利荣,王有良,游云飞,冯随起,林开敏. 抚育间伐对人工林生态系统影响的研究进展. 亚热带农业研究. 2020(04): 279-288 .
    20. 刘泰瑞,任达,董威,覃志杰,张芸香,郭晋平. 华北落叶松天然林目标树间伐释压与胸径生长关系研究. 中南林业科技大学学报. 2019(01): 20-24+44 .
    21. 廖鋆章,贲丽云. 不同间伐措施强度对杉木人工林碳储量及其分配的影响研究. 低碳世界. 2019(04): 308-309 .
    22. 周焘,王传宽,周正虎,孙志虎. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响. 应用生态学报. 2019(05): 1651-1658 .
    23. Zhenge HUANG,Minyang XIE,Mingbao WEI,Bin HE,Shaozhuang MO,Gang ZHOU,Ji LIANG. Carbon Storage and Distribution of the Mature Pinus massoniana Plantation in Northwest Guangxi. Agricultural Biotechnology. 2019(03): 141-144 .
    24. 管惠文,董希斌,张甜,曲杭峰,王智勇. 抚育间伐后落叶松天然次生林生境恢复效果的评价. 东北林业大学学报. 2019(07): 6-13+24 .
    25. 戎建涛,张晓红,郜爱玲,王艳英,潘凡群. 不同间伐强度经营对柳杉人工林土壤理化性质的影响. 西北林学院学报. 2019(04): 206-211 .
    26. 董莉莉,赵济川,汪成成,刘红民,高英旭,杨鹤. 抚育间伐后蒙古栎阔叶混交林径级结构及生长动态研究. 西南林业大学学报(自然科学). 2019(06): 98-104 .
    27. 董莉莉,刘红民,汪成成,赵济川,高英旭,黄夏,肖尧. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响. 沈阳农业大学学报. 2019(05): 614-620 .
    28. 韦明宝,王朝健,杨正文,黄振格,王汉敢,何斌. 桂西北马尾松人工林生态系统碳贮量与分布. 亚热带农业研究. 2019(03): 152-156 .
    29. 银彬吾,刘奇林,陆滟灵,何斌,黄振格,谢敏洋. 2种更新方式4年生尾巨桉人工林碳储量及其分布特征. 广西林业科学. 2019(04): 466-471 .
    30. 朱子卉,杨华,张恒,王全军,孙权,杨超. 择伐后落叶松云冷杉林直径结构及生长的动态变化. 北京林业大学学报. 2018(05): 55-62 . 本站查看
    31. 韦家国,周刚,刘凡胜,杨正文,莫少壮,何斌. 秃杉林和连栽杉木林生态系统C积累及其分布格局. 亚热带农业研究. 2018(01): 29-33 .
    32. Zhou Gang,He Bin,Wei Jiaguo,Liu Fansheng,Mo Shaozhuang,Yang Zhengwen. Carbon Accumulation and Distribution in Ecosystems of Taiwania flousiana Plantation and Successive Rotation Plantation of Cunninghamia lanceolata. Meteorological and Environmental Research. 2018(04): 11-14+18 .
    33. 张期奇,董希斌,张甜,曲杭峰,马晓波,管惠文,王智勇,阮加甫,陈蕾. 抚育间伐强度对兴安落叶松中龄林测树因子的影响. 森林工程. 2018(05): 1-7+55 .
    34. 段梦成,王国梁,史君怡,周昊翔. 间伐对油松人工林碳储量的长期影响. 水土保持学报. 2018(05): 190-196 .
    35. 马长明,赵辉,牟洪香,刘炳响. 燕山山地华北落叶松人工林碳密度及分配特征. 水土保持学报. 2017(05): 208-214 .

    Other cited types(35)

Catalog

    Article views (1573) PDF downloads (42) Cited by(70)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return