• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185
Citation: He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185

Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry

More Information
  • Received Date: April 29, 2019
  • Revised Date: June 04, 2019
  • Available Online: December 29, 2019
  • Published Date: January 13, 2020
  • ObjectiveThis paper aims to explore the leaf nutrient content before and after senescing, nutrient reabsorption efficiency(RE) and C∶N∶P stoichiometry of Dodonaea viscose, Coriaria sinica and Sophora davidii in hot and dry valley.
    MethodOne way analysis of variance and Pearson correlation analysis were used.
    ResultThe results showed that the contents of nitrogen (N) in litter were as follows: C. sinica > S. davidii > D. viscose, the contents of nitrogen (N) and phosphorus (P) in fresh leaves, P in litter followed an order of S. davidii > D. viscose > C. sinica. S. davidii’s N had the highest reabsorption efficiency. And the reabsorption efficiency of D. viscose’s P was the highest. There were significant differences (P < 0.05) between the three shrub fresh leaves and litter C∶N, C∶P, however, N∶P had no significant difference. In addition, N reabsorption efficiency of D. viscose was significantly correlated (P < 0.05) with C∶N of the litter, and P reabsorption efficiency was significantly correlated with C∶N of the fresh leaf. At the same time, N reabsorption efficiency of C. sinica was significantly and negatively correlated with C∶N of the fresh leaf, N∶P of the litter, P reabsorption efficiency was significantly and negatively correlated with C∶N, N∶P of the fresh leaf, and N reabsorption efficiency of S. davidii was significantly correlated with C∶N, N∶P of the litter. Except for the significant correlation between the N content of fresh leaves and the AN content in soil, there was no significant correlation between the contents of C, N and P in the leaves and the contents of nutrients in the soil.
    ConclusionOn the whole, the three shrubs are restricted by P during the growth process, and the N and P contents are all incompletely absorbed. In addition, the N and P reabsorption rates are lower than the nutrient reabsorption rates of various terrestrial plants on a global scale. It shows that the ability of the dry heat valley D. viscose, C. sinica and S. davidii shrubs to adapt to the barren land through nutrient reabsorption is gradually weakened, and the N and P nutrient preservation ability is reduced.
  • [1]
    严思维, 陈爱民, 林勇明, 等. 干热河谷区不同林龄赤桉叶中养分含量和再吸收率的比较及其线性回归分析[J]. 植物资源与环境学报, 2017, 26(1):39−46. doi: 10.3969/j.issn.1674-7895.2017.01.05

    Yan S W, Chen A M, Lin Y M, et al. Comparisons on content and reabsorption rate of nutrients in leaf of Eucalyptus camaldulensis at different stand ages in arid-hot valley and their linear-regression analysis[J]. Journal of Plant Resources and Environment, 2017, 26(1): 39−46. doi: 10.3969/j.issn.1674-7895.2017.01.05
    [2]
    Santa R I, Leonardi S, Rapp M. Foliar nutrient dynamics and nutrient use efficiency in Castanea sativa coppice stands of southern Europe[J]. Forestry, 2001, 74: 1−10. doi: 10.1093/forestry/74.1.1
    [3]
    邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2015, 21(3):522−527.

    Deng H J, Chen A M, Yan S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages ofLeucaena leucocephala[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 522−527.
    [4]
    汤璐瑛. 木本植物叶片养分重吸收研究[D]. 北京: 北京大学, 2012.

    Tang L Y. Study on nutrient reabsorption of woody plant leaves[D]. Beijing: Peking University, 2012.
    [5]
    Pugnaire F I, Chapin III F S. Controls over nutrient resorption from leaves of evergreen Mediterranean species[J]. Ecology, 1993, 74(1): 124−129. doi: 10.2307/1939507
    [6]
    Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands[J]. Oecologia, 1990, 84: 391−397. doi: 10.1007/BF00329765
    [7]
    段兵红, 陆姣云, 刘敏国, 等. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系[J]. 草业学报, 2016, 25(12):76−83. doi: 10.11686/cyxb2016235

    Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu[J]. Acta Prataculturae Sinica, 2016, 25(12): 76−83. doi: 10.11686/cyxb2016235
    [8]
    张林, 阎恩荣, 魏海霞, 等. 藏东南色季拉山林线过渡带7种灌木植物的叶氮回收潜力[J]. 植物生态学报, 2014, 38(12):1325−1332. doi: 10.3724/SP.J.1258.2014.00127

    Zhang L, Yan E R, Wei H X, et al. Leaf nitrogen resorption proficiency of seven shrubs across timberline ecotones in the Sergymla Mountains, Southeast Xizang[J]. Chinese Journal of Plant Ecology, 2014, 38(12): 1325−1332. doi: 10.3724/SP.J.1258.2014.00127
    [9]
    闫帮国, 何光熊, 史亮涛, 等. 元谋干热河谷燥红土和变性土上植物叶片的元素含量及其重吸收效率[J]. 应用生态学报, 2016, 27(4):1039−1045.

    Yan B G, He G X, Shi L T, et al. Element concentration in leaves and nutrient resorption efficiency on dry-red soil and vertisols in dry and hot valley in Yuanmou[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1039−1045.
    [10]
    Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2010, 3(6): 540−550.
    [11]
    戚德辉, 温仲明, 王红霞, 等. 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应[J]. 生态学报, 2016, 36(20):6420−6430.

    Qi D H, Wen Z M, Wang H X, et al. Stoichiometry traits of carbon, nitrogen, and phosphorus in plants of different functional groups and their responses to micro-topographical variations in the hilly and gully region of the Loess Plateau[J]. Acta Ecologica Sinica, 2016, 36(20): 6420−6430.
    [12]
    平川, 王传宽, 全先奎. 环境变化对兴安落叶松氮磷化学计量特征的影响[J]. 生态学报, 2014, 34(8):1965−1974.

    Ping C, Wang C K, Quan X K. Influence of environmental changes on stoichiometric traits of nitrogen and phosphorus for Larix gmelinii trees[J]. Acta Ecologica Sinica, 2014, 34(8): 1965−1974.
    [13]
    李从娟, 雷加强, 徐新文, 等. 塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征[J]. 生态学报, 2013, 33(18):5760−5767. doi: 10.5846/stxb201304300872

    Li C J, Lei J Q, Xu X W, et al. The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert[J]. Acta Ecologica Sinica, 2013, 33(18): 5760−5767. doi: 10.5846/stxb201304300872
    [14]
    赵耀, 王百田, 李萌, 等. 晋西吕梁山区3种森林碳氮磷生态化学计量特征[J]. 应用与环境生物学报, 2018, 24(3):518−524.

    Zhao Y, Wang B T, Li M, et al. Ecological stoichiometric characteristics of carbon, nitrogen, and phosphorus in three forests in the Lüliang Mountainous Area of Shanxi Province[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(3): 518−524.
    [15]
    佘淑凤, 胡玉福, 舒向阳, 等. 川西北高寒沙地不同年限高山柳林下优势植物碳、氮、磷生态化学计量特征[J]. 草业学报, 2018, 27(4):123−130. doi: 10.11686/cyxb2017220

    She S F, Hu Y F, Shu X Y, et al. Variation of C, N and P stoichiometry in dominant understory plants during stand development in Salix cupularis plantations in alpine grassland in Northwestern Sichuan[J]. Acta Prataculturae Sinica, 2018, 27(4): 123−130. doi: 10.11686/cyxb2017220
    [16]
    王宝荣, 曾全超, 安韶山, 等. 黄土高原子午岭林区两种天然次生林植物叶片−凋落叶−土壤生态化学计量特征[J]. 生态学报, 2017, 37(16):5461−5473.

    Wang B R, Zeng Q C, An S S, et al. C∶N∶P stoichiometry characteristics of plants-litter-soils in two kind types of natural secondary forest on the Ziwuling Region of the Loess Plateau[J]. Acta Ecologica Sinica, 2017, 37(16): 5461−5473.
    [17]
    Yu Q, Chen Q, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11): 1390. doi: 10.1111/j.1461-0248.2010.01532.x
    [18]
    闫帮国, 刘刚才, 樊博, 等. 干热河谷植物化学计量特征与生物量之间的关系[J]. 植物生态学报, 2015, 39(8):807−815. doi: 10.17521/cjpe.2015.0077

    Yan B G, Liu G C, Fan B, et al. Relationships between plant stoichiometry and biomass in an arid-hot valley, Southwest China[J]. Chinese Journal of Plant Ecology, 2015, 39(8): 807−815. doi: 10.17521/cjpe.2015.0077
    [19]
    刘旻霞, 朱柯嘉. 青藏高原东缘高寒草甸不同功能群植物氮磷化学计量特征研究[J]. 中国草地学报, 2013, 35(2):52−58. doi: 10.3969/j.issn.1673-5021.2013.02.010

    Liu M X, Zhu K J. Characteristics of nitrogen and phosphorus stoichiometry of plants in different functional groups on alpine meadow in the eastern edge of Tibetan Plateau[J]. Chinese Journal of Grassland, 2013, 35(2): 52−58. doi: 10.3969/j.issn.1673-5021.2013.02.010
    [20]
    罗玉珠, 曾太, 东伟, 等. 高寒嵩草草甸植物群落生态化学计量特征研究[J]. 中国草地学报, 2013, 35(3):92−96. doi: 10.3969/j.issn.1673-5021.2013.03.016

    Luo Y Z, Zeng T, Dong W, et al. Research of ecological stoichiometry of plant community in alpine kobresia meadow[J]. Chinese Journal of Grassland, 2013, 35(3): 92−96. doi: 10.3969/j.issn.1673-5021.2013.03.016
    [21]
    金振洲, 欧晓昆, 周跃. 云南元谋干热河谷植被概况[J]. 植物生态学报, 1987, 11(4):308−317.

    Jin Z Z, Ou X K, Zhou Y. The general situation of natural vegetation in dry-hot river valley of Yuanmou, Yunnan Province[J]. Chinese Journal of Plant Ecology, 1987, 11(4): 308−317.
    [22]
    吴建召, 陈爱民, 崔羽, 等. 干热河谷常见植物地表形态特征与泥沙拦截的关系[J]. 应用与环境生物学报, 2018, 24(6):1236−1246.

    Wu J Z, Chen A M, Cui Y, et al. Relationship between near-surface morphological traits of familiar plants and their ability for sediment retention in a dry-hot valley[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(6): 1236−1246.
    [23]
    林勇明, 崔鹏, 王道杰, 等. 泥石流频发区人工新银合欢林群落特征[J]. 中国水土保持科学, 2009, 7(6):63−67. doi: 10.3969/j.issn.1672-3007.2009.06.011

    Lin Y M, Cui P, Wang D J, et al. Community characteristic of plantation of Leucaena leucocephala in the area with high-frequency debris flow[J]. Science of Soil and Water Conservation, 2009, 7(6): 63−67. doi: 10.3969/j.issn.1672-3007.2009.06.011
    [24]
    崔鹏, 王道杰, 韦方强. 干热河谷生态修复模式及其效应: 以中国科学院东川泥石流观测研究站为例[J]. 中国水土保持科学, 2005, 3(3):60−64. doi: 10.3969/j.issn.1672-3007.2005.03.012

    Cui P, Wang D J, Wei F Q. Model and effect of ecological restoration of dry-hot valley: a case study of the CAS Dongchuan Debris Flow Observation Station[J]. Science of Soil and Water Conservation, 2005, 3(3): 60−64. doi: 10.3969/j.issn.1672-3007.2005.03.012
    [25]
    Drenovsky R E, Koehler C E, Skelly K, et al. Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees[J]. Oecologia, 2013, 171(1): 39−50. doi: 10.1007/s00442-012-2396-7
    [26]
    郭超, 蔡家艳, 金奇, 等. 鄱阳湖湿地优势植物氮磷再吸收[J]. 生态学杂志, 2016, 35(3):692−697.

    Guo C, Cai J Y, Jin Q, et al. Nitrogen and phosphorus resorption of six dominant plant species in Poyang Lake wetlands[J]. Chinese Journal of Ecology, 2016, 35(3): 692−697.
    [27]
    罗绪强, 张桂玲, 杜雪莲, 等. 茂兰喀斯特森林常见钙生植物叶片元素含量及其化学计量学特征[J]. 生态环境学报, 2014, 23(7):1121−1129. doi: 10.3969/j.issn.1674-5906.2014.07.005

    Luo X Q, Zhang G L, Du X L, et al. Characteristics of element contents and ecological stoichiometry in leaves of common calcicole species in Maolan Karst Forest[J]. Ecology and Environmental Sciences, 2014, 23(7): 1121−1129. doi: 10.3969/j.issn.1674-5906.2014.07.005
    [28]
    Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578−580. doi: 10.1038/35046058
    [29]
    Bowman W D, Bahn L, Damm M. Alpine landscape variation in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorus availability[J]. Arctic, Antarctic, and Alpine Research, 2003, 35(2): 144−149. doi: 10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2
    [30]
    朱军涛, 李向义, 张希明, 等. 塔克拉玛干沙漠南缘豆科与非豆科植物的氮分配[J]. 植物生态学报, 2010, 34(9):1025−1032. doi: 10.3773/j.issn.1005-264x.2010.09.003

    Zhu J T, Li X Y, Zhang X M, et al. Nitrogen allocation and partitioning within a leguminous and two non-leguminous plant species growing at the southern fringe of China’s Taklamakan Desert[J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1025−1032. doi: 10.3773/j.issn.1005-264x.2010.09.003
    [31]
    Leonardus V, Stefano M, Amilcare P, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants[J]. Ecological Monographs, 2012, 82: 205−220. doi: 10.1890/11-0416.1
    [32]
    刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2015, 39(1):52−62. doi: 10.17521/cjpe.2015.0006

    Liu W D, Su J R, Li S F, et al. Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province[J]. Chinese Journal of Plant Ecology, 2015, 39(1): 52−62. doi: 10.17521/cjpe.2015.0006
    [33]
    李志安, 林永标, 彭少麟. 华南人工林凋落叶养分及其转移[J]. 应用生态学报, 2000, 11(3):321−326. doi: 10.3321/j.issn:1001-9332.2000.03.001

    Li Z A, Lin Y B, Peng S L. Nutrient content in litterfall and its translocation in plantation forests in south China[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 321−326. doi: 10.3321/j.issn:1001-9332.2000.03.001
    [34]
    王冬梅, 杨惠敏. 4种牧草不同生长期C、N生态化学计量特征[J]. 草业科学, 2011, 28(6):921−925.

    Wang D M, Yang H M. Carbon and nitrogen stoichiometry at different growth stages in legumes and grasses[J]. Pratacultural Science, 2011, 28(6): 921−925.
    [35]
    Aerts R. Nutrient resorption from senescing leaves of perennials: are there general patterns?[J]. The Journal of Ecology, 1996, 84(4): 597−608. doi: 10.2307/2261481
    [36]
    刘宏伟, 刘文丹, 王微, 等. 重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征[J]. 生态学报, 2015, 35(12):4071−4080.

    Liu H W, Liu W D, Wang W, et al. Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing[J]. Acta Ecologica Sinica, 2015, 35(12): 4071−4080.
    [37]
    阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征[J]. 植物生态学报, 2010, 34(1):48−57.

    Yan E R, Wang X H, Guo M, et al. C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48−57.
    [38]
    Gusewell S. N: P ratios in terrestrial plants: variation and functional significance[J]. New Phytol, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [39]
    赵琼, 曾德慧. 林木生长氮磷限制的诊断方法研究进展[J]. 生态学杂志, 2009, 28(1):122−128.

    Zhao Q, Zeng D H. Diagnosis methods of N and P limitation to tree growth: a review[J]. Chinese Journal of Ecology, 2009, 28(1): 122−128.
    [40]
    Vitousek P M, Turner D R, Parton W J, et al. Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models[J]. Ecology, 1994, 75: 418−429. doi: 10.2307/1939545
    [41]
    Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[J]. Advances in Ecological Research, 1999, 30: 1−67. doi: 10.1016/S0065-2504(08)60016-1
    [42]
    Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
  • Related Articles

    [1]Jiang Jun, Chen Changqi, Chen Beibei, Wang Hao, Hu Dongyang, Zhang Yong, Zhang Yongfu, Li Jie, Zheng Junpeng. Effects of stand density on carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption of Platycladus orientalis plantations in rocky mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(10): 33-41. DOI: 10.12171/j.1000-1522.20240011
    [2]Tu Jing, Zhang Jinyan, Li Zhongfei. Ecological stoichiometric characteristics of sapling branches of dominant species in different forest types in southern Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(5): 46-54. DOI: 10.12171/j.1000-1522.20220295
    [3]Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
    [4]Li Chenxi, Wei Xing, Tang Jingwen, Cheng Xin, Liu Jing, Peng Zhenglin, Su Anran, Su Jiaxi, Wu Chenglin, Wu Chunze. Response of photosynthetic and stoichiometric characteristics of female and male leaves of Fraxinus mandshurica to exogenous hormones[J]. Journal of Beijing Forestry University, 2023, 45(12): 80-89. DOI: 10.12171/j.1000-1522.20220335
    [5]Wang Xiaolin, Wang Yin, He Yicheng, Yang Hui, Qu Mengjun, Zou Xuge, Li Jingwen. Stoichiometric characteristics of carbon and nitrogen in plants and their influencing factors in the lower reaches of the Heihe River, northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(4): 50-59. DOI: 10.12171/j.1000-1522.20210545
    [6]Chen Beibei, Yang Hao, Jiang Jun. Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(7): 8-15. DOI: 10.12171/j.1000-1522.20210055
    [7]Wang Lixuan, Gao Jiaqi, Yang Guang, Di Xueying, Yu Hongzhou, Weng Yuetai. Stoichiometric characteristics of C and N of post-fire forest floor of Larix gmelinii[J]. Journal of Beijing Forestry University, 2021, 43(12): 55-64. DOI: 10.12171/j.1000-1522.20200281
    [8]Wang Yansong, Ma Baoming, Gao Haiping, Wang Baitian, Li Sha, Dong Xiuqun. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81-93. DOI: 10.12171/j.1000-1522.20190287
    [9]Wu Peng, Cui Yingchun, Zhao Wenjun, Shu Deyuan, Hou Yiju, Ding Fangjun, Yang Wenbin. Characteristics of soil stoichiometric in natural restoration process of Maolan karst forest vegetation, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 80-92. DOI: 10.13332/j.1000-1522.20180136
    [10]Wu Jianzhao, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie, Wu Chengzhen. Characteristics of plants, soil nutrients and leaf stoichiometry at the early stage of ecological restoration in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(2): 41-52. DOI: 10.13332/j.1000-1522.20180329
  • Cited by

    Periodical cited type(25)

    1. 罗也,王君,杨雨春,何怀江,刘婷. 东北胡桃楸次生林生长随林龄和林分密度的变化规律. 北京林业大学学报. 2024(06): 10-19 . 本站查看
    2. 李玉凤,郭飞,莫燕华,秦佳双,马姜明. 两种密度马尾松人工林生态系统碳储量及其分配特征. 广西林业科学. 2024(05): 577-584 .
    3. 曹欣媛,袁丛军,王浩东,陈梦,李君一,单绍朋,姜克,张家才. 乌蒙山不同龄组华山松林乔木层碳密度及固碳释氧能力. 贵州林业科技. 2023(01): 32-38+31 .
    4. 冯宜明,吕春燕,王零,赵维俊,马雪娥,杜军林,何俊龄. 不同林分密度青海云杉林碳氮储量及其分配格局. 干旱区地理. 2023(07): 1133-1144 .
    5. 代林利,周丽丽,伍丽华,刘丽,黄樱,彭婷婷,邱静雯,何宗明,曹光球. 不同林分密度杉木林生态系统碳密度及其垂直空间分配特征. 生态学报. 2022(02): 710-719 .
    6. 郑颖,冯健,于世河,卜鹏图,王月婵,黄夏,郑璐. 辽东山区不同密度落叶松人工幼龄林林木生长和土壤养分特性. 中南林业科技大学学报. 2022(01): 94-103 .
    7. 刘延坤,李云红,陈瑶,刘玉龙,田松岩. 坡位对不同密度长白落叶松人工林生态系统碳储量的影响. 贵州农业科学. 2022(07): 133-140 .
    8. 董灵波,陈冠谋,蔺雪莹,刘兆刚. 基于CO_2FIX模型的长白落叶松人工林碳汇和木材生产模拟. 应用生态学报. 2022(10): 2653-2662 .
    9. 刘海英,王增,徐耀文,葛晓改,周本智,蒋仲龙. 不同林分密度毛竹林生态系统碳储量特征. 中国农学通报. 2022(35): 17-21 .
    10. 赖敏英,肖集泓,李媚,王春晓,邓传远. 平潭岛植物群落乔木层碳储量及影响因素研究. 山东林业科技. 2022(06): 19-26 .
    11. 李玉凤,李妹珍,马姜明,宋尊荣,莫燕华,杨章旗,陆绍浩. 林分密度对马尾松人工林土壤碳储量及其分配特征的影响. 广西林业科学. 2021(01): 54-59 .
    12. 朱万才,吴瑶,李亚洲,张怡春. 不同保留密度对落叶松水曲柳混交林的影响. 森林工程. 2021(02): 50-56+94 .
    13. 杜满义,封焕英,裴顺祥,张连金,法蕾,郭嘉,辛学兵. 晋南不同密度油松人工林土壤水分的物理特性. 东北林业大学学报. 2021(09): 72-76 .
    14. 吴敏,陈瑞,李贵,刘振华,童琪,童方平. 武陵石漠化山地林分有机碳密度分布特征研究. 湖南林业科技. 2021(06): 9-15 .
    15. 马学发,卫月华,梁凤和,孙志虎,王庆成,龚丽芳,左肖罗,王梦阳. 不同造林密度水曲柳人工林大径材培育首次间伐临界胸径的确定. 东北林业大学学报. 2020(08): 1-5 .
    16. 张海东,季蒙,王志波,卜玉强,李银祥,伊敏,于楠楠,田稼穑,刘佳. 苏木山不同林分密度华北落叶松人工林枯落物特征. 内蒙古林业科技. 2020(02): 41-44 .
    17. 关追追,张彦东. 水曲柳节子时空分布特征与变色规律研究. 北京林业大学学报. 2020(08): 53-60 . 本站查看
    18. 张亚伟,孙海龙,郑鸿权,卫月华. 施肥对水曲柳林木叶片SPAD值的影响. 森林工程. 2020(05): 34-39+44 .
    19. 李显鲜,杨培华,郝红科,康乐,陈雪姣. 油松人工林合理经营密度的研究. 林业资源管理. 2020(04): 34-43 .
    20. 魏永平. 不同密度杉木人工林各组分碳贮量分析. 福建林业科技. 2020(04): 14-17+47 .
    21. 马双娇,王庆成,崔东海,朱凯月,张勇,徐立清,胡建文. 抚育间伐对水曲柳天然林群落结构及植物多样性的影响. 东北林业大学学报. 2019(02): 1-7 .
    22. 张新洁,陆天宇,孙海龙,赵宏波. 氮磷添加对水曲柳化学计量特征和养分再吸收的影响. 森林工程. 2019(05): 16-21 .
    23. 李翔,王海燕,秦倩倩,王卓晖,解雅麟,王福增,郑永林,耿琦. 林分密度对半分解层凋落物现存量空间异质性的影响. 应用与环境生物学报. 2019(04): 817-822 .
    24. 刘可欣,赵宏波,张新洁,冯晨辛,张彦东. 修枝强度对水曲柳光合作用及细根非结构性碳的影响. 东北林业大学学报. 2019(11): 42-46 .
    25. 范春楠,郑金萍,韩士杰,郭忠玲,王丽丽,周振钊. 吉林省中东部森林分布区水曲柳分布及其生态特征. 北京林业大学学报. 2017(04): 1-11 . 本站查看

    Other cited types(16)

Catalog

    Article views (2115) PDF downloads (97) Cited by(41)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return