• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437
Citation: Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437

Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves

More Information
  • Received Date: December 31, 2018
  • Revised Date: June 10, 2019
  • Available Online: December 15, 2019
  • Published Date: January 13, 2020
  • ObjectiveThe purpose of this study was to investigate the effects of plant growth retardants on the leaf anatomy and non-structural carbohydrates of chestnut saplings, and the effects of leaf anatomical changes on non-structural carbohydrate content,in order to provide a theoretical basis for the application of plant growth retardants in the regulation of chestnut growth.
    MethodIn this experiment, chestnut (Castanea) cultivar ‘Yanshanzaofeng’ was taken as the experimental material, and exposed to different concentrations of paclobutrazol, chlormequat and uniconazole,then the anatomy and non-structural carbohydrates of the leaf were analysed.
    Result(1) Paclobutrazol, chlormequat and uniconazole could increase the thickness of the cuticle of chestnut leaves. The maximum thickness of the upper cuticle was 5.46 μm treated with 90 mg/L uniconazole, and the thickness of the lower cuticle was 1.76 μm treated with 60 mg/L uniconazole; (2) except for treatment with 60 mg/L uniconazole, the other treatments could increase the thickness of leaves and palisade tissue. The most significant effects of leaf and palisade tissue thickness were 100 mg/L paclobutrazol treatments; (3) three kinds of retardants could increase the palisade to sponge tissue ratio, it was up to 1.52, which was treated with 90 mg/L uniconazole; (4) except 60 mg/L uniconazole treatment, the other treatments could effectively increase the non-structural carbohydrate content of chestnut leaves, the increase of non-structural carbohydrate content was most significant at 120 days after treatment.
    ConclusionSpraying paclobutrazol, chlormequat and uniconazole on the leaf surface in the period of chestnut flower buds could affect the anatomy of chestnut leaves, thereby enhancing the photosynthesis of chestnut,and the best treatment was 100 mg/L paclobutrazol. Paclobutrazol, chlormequat and uniconazole could effectively increase the non-structural carbohydrates content of chestnut leaves, and 60–90 mg/L of uniconazole was the best treatment. Due to the application of retardants, the leaf anatomy changed the photosynthesis of the leaves, which increased the assimilation, and it made the non-structural carbohydrate content of the leaves increase.
  • [1]
    张锋, 潘康标, 田子华. 植物生长调节剂研究进展及应用对策[J]. 现代农业科技, 2012(1):193−195. doi: 10.3969/j.issn.1007-5739.2012.01.127

    Zhang F, Pan K B, Tian Z H. Research progress and application strategies of plant growth regulators[J]. Modern Agricultural Science and Technology, 2012(1): 193−195. doi: 10.3969/j.issn.1007-5739.2012.01.127
    [2]
    张亦弛, 郭素娟, 孙传昊. 生长延缓剂对板栗枝条的促壮效应和叶片发育及生理的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(9):79−89.

    Zhang Y C, Guo S J, Sun C H. Effects of growth retardants on the branches growth,leaves development and physiology of chestnut[J]. Journal of Northwest A&F University (Natural Science Edition) , 2019, 47(9): 79−89.
    [3]
    宋海凤, 李绍才, 孙海龙, 等. 根施不同浓度多效唑对紫穗槐生长特性和相关生理指标的影响[J]. 植物生理学报, 2015, 51(9):1495−1501.

    Song H F, Li S C, Sun H L, et al. Effects of soil-applied paclobutrazol on growth and physiological characteristics of Amorpha fruticosa[J]. Plant Physiology Journal, 2015, 51(9): 1495−1501.
    [4]
    许锋, 张威威, 孙楠楠, 等. 矮壮素对银杏叶片光合代谢与萜内酯生物合成的影响[J]. 园艺学报, 2011, 38(12):2253−2260.

    Xu F, Zhang W W, Sun N N, et al. Effects of chlorocholine chloride on photosynthesis metabolism and terpene trilactones biosynthesis in the leaf of Ginkgo biloba[J]. Acta Horticulturae Sinica, 2011, 38(12): 2253−2260.
    [5]
    闫艳红, 万燕, 杨文钰, 等. 叶面喷施烯效唑对套作大豆花后碳氮代谢及产量的影响[J]. 大豆科学, 2015, 34(1):75−81.

    Yan Y H, Wan Y, Yang W Y, et al. Effect of spraying uniconazole on carbon and nitrogen metabolism and yield of relay strip intercropping soybean[J]. Soybean Science, 2015, 34(1): 75−81.
    [6]
    杨丽芝, 潘春霞, 邵珊璐, 等. 多效唑和干旱胁迫对毛竹实生苗活力、光合能力及非结构性碳水化合物的影响[J]. 生态学报, 2018, 38(6):2082−2091.

    Yang L Z, Pan C X, Shao S L, et al. Effects of PP333 and drought stress on the activity photosynthetic characteristics and non-structural carbohydrates of Phyllostachys edulis seedlings[J]. Acta Ecologica Sinica, 2018, 38(6): 2082−2091.
    [7]
    潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2008: 58.

    Pan R Z. Plant physiology[M]. Beijing: Higher Education Press, 2008: 58.
    [8]
    郑国琦, 张磊, 郑国保, 等. 不同灌水量对干旱区枸杞叶片结构、光合生理参数和产量的影响[J]. 应用生态学报, 2010, 21(11):2806−2813.

    Zheng G Q, Zhang L, Zheng G B, et al. Effects of irrigation amount on leaf structure, photosynthetic physiology, and fruit yield of Lycium barbarum in arid area[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2806−2813.
    [9]
    张婧雯, 郭太君, 刘瑞文, 等. 树冠不同部位叶片结构与固碳释氧和增湿降温相关性[J]. 北方园艺, 2018(1):98−103.

    Zhang J W, Guo T J, Liu R W, et al. Correlation between leaf structure and carbon fixation, oxygen release and humidification in different parts of canopy[J]. Northern Horticulture, 2018(1): 98−103.
    [10]
    冯乃杰, 郑殿峰, 赵玖香, 等. 植物生长物质对大豆叶片形态解剖结构及光合特性的影响[J]. 作物学报, 2009, 35(9):1691−1697.

    Feng N J, Zheng D F, Zhao J X, et al. Effect of plant growth substances on morphological and anatomical structure of leaf and photosynthetic characteristics in soybean[J]. Acta Agronomica Sinica, 2009, 35(9): 1691−1697.
    [11]
    Yang W L, Zhou W Q, Sun J F, et al. Effects of PP333 and exogenous ABA on leaf tissue structure of Armeniaca vulgaris ‘Luntaibaixing’[J]. Agricultural Science & Technology, 2017, 18(12): 2241−2245.
    [12]
    董倩, 王洁, 庞曼, 等. 生长调节剂对黄连木光合生理指标和荧光参数的影响[J]. 西北植物学报, 2012(3):484−490. doi: 10.3969/j.issn.1000-4025.2012.03.008

    Dong Q, Wang J, Pang M, et al. Effects of growth regulators on photosynthetic and physiological indices and chlorophyll fluorescence parameters of Pistacia chinensis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012(3): 484−490. doi: 10.3969/j.issn.1000-4025.2012.03.008
    [13]
    张宇和, 柳鎏, 粱维坚, 等. 中国果树志(板栗榛子卷)[M]. 北京: 中国林业出版社, 2005: 11−14.

    Zhang Y H, Liu L, Liang W J, et al. China fruit tree (chestnut scorpion roll)[M]. Beijing: China Forestry Publishing House, 2005: 11−14.
    [14]
    张玉星. 果树栽培学各论(北方本)[M]. 北京: 中国农业出版社, 2003: 260−289.

    Zhang Y X. Theory of fruit cultivation (northern)[M]. Beijing: China Agricultural Press, 2003: 260−289.
    [15]
    Zou F, Guo S J, Xiong H, et al. A morphological and histological characterization of male flower in chestnut (Castanea) cultivar ‘Yanshanzaofeng’[J]. Advance Journal of Food Science and Technology, 2013, 5(9): 1192−1197. doi: 10.19026/ajfst.5.3081
    [16]
    Guo S J, Zou F. Observation on the pistillate differentiation of chestnut (Castanea) cultivar ‘Yanshanzaofeng’[J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(1): 689−690.
    [17]
    张振清. 植物生理学试验手册[M]. 上海: 上海科学技术出版社, 1985: 134−138.

    Zhang Z Q. Plant physiology test manual[M]. Shanghai: Shanghai Science and Technology Press, 1985: 134−138.
    [18]
    吕晋慧, 王玄, 冯雁梦, 等. 遮荫对金莲花光合特性和叶片解剖特征的影响[J]. 生态学报, 2012, 32(19):6033−6043.

    Lü J H, Wang X, Feng Y M, et al. Effects of shading on the photosynthetic characteristics and anatomical structure of Trollius chinensis Bunge[J]. Acta Ecologica Sinica, 2012, 32(19): 6033−6043.
    [19]
    李建明, 潘铜华, 王玲慧, 等. 水肥耦合对番茄光合、产量及水分利用效率的影响[J]. 农业工程学报, 2014, 30(10):82−90. doi: 10.3969/j.issn.1002-6819.2014.10.010

    Li J M, Pan T H, Wang L H, et al. Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 82−90. doi: 10.3969/j.issn.1002-6819.2014.10.010
    [20]
    张宇, 宋敏丽, 李利平. 亚高温下不同空气湿度对番茄光合作用和物质积累的影响[J]. 生态学杂志, 2012, 31(2):342−347.

    Zhang Y, Song M L, Li L P. Effects of air humidity on tomato plant photosynthesis and dry matter accumulation at sub-high temperature[J]. Chinese Journal of Ecology, 2012, 31(2): 342−347.
    [21]
    张丽红, 宋阳, 张之为, 等. 长期增施CO2条件下黄瓜叶片淀粉积累对光合作用的影响[J]. 园艺学报, 2015, 42(7):1321−1328.

    Zhang L H, Song Y, Zhang Z W, et al. Effects of the starch accumulation on photosynthesis of cucumber leaves under long term elevated CO2 condition[J]. Acta Horticulturae Sinica, 2015, 42(7): 1321−1328.
    [22]
    王丽特, 徐照丽, 杨利云, 等. 4种化学调控剂对烟草幼苗耐冷性及其光合特性的效应研究[J]. 西北植物学报, 2015, 35(4):801−808. doi: 10.7606/j.issn.1000-4025.2015.04.0801

    Wang L T, Xu Z L, Yang L Y, et al. Effects of four chemical regulators on chilling tolerance and photosynthetic characteristics of tobacco seedlings[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(4): 801−808. doi: 10.7606/j.issn.1000-4025.2015.04.0801
    [23]
    姜延付, 张述斌, 张锐, 等. 两种植物生长延缓剂对核桃叶片光合特性的影响[J]. 塔里木大学学报, 2017, 29(1):100−104. doi: 10.3969/j.issn.1009-0568.2017.01.015

    Jiang Y F, Zhang S B, Zhang R, et al. Two kinds of plant growth retardants effects on walnut leaf photosynthetic characteristics[J]. Journal of Tarim University, 2017, 29(1): 100−104. doi: 10.3969/j.issn.1009-0568.2017.01.015
    [24]
    Han S W, Fermanian T W, Juvik J A, et al. Growth retardant effects on visual quality and nonstructural carbohydrates of creeping bentgrass[J]. Hort Science, 1998, 33(7): 1197−1199. doi: 10.21273/HORTSCI.33.7.1197
    [25]
    张桂茹, 杜维广, 满为群, 等. 不同光合特性大豆叶的比较解剖研究[J]. 植物学通报, 2002(2):208−214.

    Zhang G R, Du W G, Man W Q, et al. comparative anatomical study on soybean leaves with different photosynthetic characteristics[J]. Chinese Bulletin of Botany, 2002(2): 208−214.
    [26]
    Miyazawa S I, Terashima I. Slow development of leaf photosynthesis in an evergreen broad-leaved tree, Castanopsis sieboldii: relationships between leaf anatomical characteristics and photosynthetic rate[J]. Plant Cell and Environment, 2001, 24: 279−291. doi: 10.1046/j.1365-3040.2001.00682.x
    [27]
    祁传磊, 靳春莲, 李开隆, 等. 不同倍性大青杨的光合特性及叶片解剖结构比较[J]. 植物生理学通讯, 2010, 46(9):917−922.

    Qi C L, Jin C L, Li K L, et al. Comparison of photosynthetic characteristics and leaf anatomical structure of different ploidyPopulus euphratica Kom[J]. Plant Physiology Journal, 2010, 46(9): 917−922.
    [28]
    张永玉. 植物生长抑制素对木芙蓉矮化机理研究[J]. 安徽农业科学, 2013, 41(29):11714−11715. doi: 10.3969/j.issn.0517-6611.2013.29.045

    Zhang Y Y. Study on the mechanism of retardants of hibiscus[J]. Anhui Agricultural Sciences, 2013, 41(29): 11714−11715. doi: 10.3969/j.issn.0517-6611.2013.29.045
    [29]
    董如磊, 喻方圆, 欧阳献. 遮荫对东京野茉莉幼苗叶片形态和解剖结构的影响[J]. 江西农业大学学报, 2010, 32(5):974−981. doi: 10.3969/j.issn.1000-2286.2010.05.018

    Dong R L, Yu F Y, Ouyang X. Effects of shading treatments on leaf morphology and anatomical structure of Styrax tonkinensis seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis, 2010, 32(5): 974−981. doi: 10.3969/j.issn.1000-2286.2010.05.018
    [30]
    段文军, 沈雅飞, 曹志华, 等. 叶面肥对油茶容器苗叶片解剖结构和光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(1):92−97.

    Duan W J, Shen Y F, Cao Z H, et al. Effects of foliar fertilizer on leaf anatomy structure and photosynthetic characteristics of Camellia oleifera seedlings[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(1): 92−97.
    [31]
    胡营, 楚海家, 李建强. 4个花苜蓿居群叶片解剖结构特征及其可塑性对不同水分处理的响应[J]. 植物科学学报, 2011, 29(2):218−225.

    Hu Y, Cu H J, Li J Q. Response of leaf anatomy characteristics and its plasticity to different soil-water conditions of Medicago ruthenica in four populations[J]. Plant Science Journal, 2011, 29(2): 218−225.
    [32]
    Mai L I, Xiao W F, Shi P, et al. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations[J]. Plant, Cell & Environment, 2008, 31(10): 1377−1387.
    [33]
    吕茹冰, 杜莹, 鲍永新, 等. 氮沉降对毛竹非结构性碳组成与分配的影响[J]. 生态学杂志, 2017, 36(3):584−591.

    Lü R B, Du Y, Bao Y X, et al. Effects of simulated nitrogen deposition on the composition and allocation of non-structural carbohydrates of Phyllostachys edulis[J]. Chinese Journal of Ecology, 2017, 36(3): 584−591.
    [34]
    Shi P L, Rner C K, Hoch G. A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas[J]. Functional Ecology, 2008, 22: 213−220. doi: 10.1111/j.1365-2435.2007.01370.x
    [35]
    刘静雅, 李绍才, 孙海龙, 等. 多效唑对紫穗槐生长及生理特性的影响[J]. 植物科学学报, 2016, 34(2):271−279. doi: 10.11913/PSJ.2095-0837.2016.20271

    Liu J Y, LI S C, Sun H N, et al. Growth and physiological changes in Amorpha fruticosa Linn. seedlings following paclobutrazol treatment[J]. Plant Science Journal, 2016, 34(2): 271−279. doi: 10.11913/PSJ.2095-0837.2016.20271
    [36]
    王丽媛, 郭素娟. 2种植物生长调节剂对板栗叶片生理特性的影响[J]. 西南农业学报, 2016, 29(2):266−269.

    Wang L Y, Guo S J. Effect of plant growth regulators on physiological characteristics of chestnut leaves[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(2): 266−269.
    [37]
    崔旭盛, 郑雷, 杜友, 等. 植物生长调节物质对梭梭和肉苁蓉生长的调节作用[J]. 中国农业大学学报, 2013, 18(5):83−89.

    Cui X S, Zheng L, Du Y, et al. Effect of plant growth regulators on the growth of Haloxylon ammodendron and Cistanche deserticola[J]. Journal of China Agricultural University, 2013, 18(5): 83−89.
    [38]
    谢寅峰, 王莹, 张志敏, 等. 烯效唑对青钱柳试管苗生长及生理特性的影响[J]. 植物资源与环境学报, 2010, 19(4):50−55. doi: 10.3969/j.issn.1674-7895.2010.04.008

    Xie Y F, Wang Y, Zhang Z M, et al. Effects of uniconazole on the growth and physiological characteristics of testis seedlings[J]. Journal of Plant Resources and Environment, 2010, 19(4): 50−55. doi: 10.3969/j.issn.1674-7895.2010.04.008
    [39]
    姜英, 彭彦, 李志辉, 等. 植物生长延缓剂对金钱树抗寒性指标的影响[J]. 草业科学, 2010, 27(9):51−56.

    Jiang Y, Peng Y, Li Z J, et al. Effects of plant growth regulators on cold tolerance of Zamioculcas zamiifolia[J]. Pratacultural Science, 2010, 27(9): 51−56.
  • Related Articles

    [1]Jin Siyu, Peng Zuodeng. Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration[J]. Journal of Beijing Forestry University, 2023, 45(8): 43-56. DOI: 10.12171/j.1000-1522.20220096
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zou Qingqin, Wang Yisong, Jiang Zhiyan, Chen Xiangwei, Wang Xiuwei. Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region[J]. Journal of Beijing Forestry University, 2021, 43(10): 1-8. DOI: 10.12171/j.1000-1522.20210233
    [4]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [5]Zhang Jianjun, Chen Liqi, Li Jianguang, Sun Miao, Fan Yongming, Yu Xiaonan. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124-131. DOI: 10.12171/j.1000-1522.20190096
    [6]LI Wei-yi, ZHANG Qiu-hui, ZHAO Guang-jie.. Structure and properties characterization of the flame retardant wood wallpaper.[J]. Journal of Beijing Forestry University, 2016, 38(7): 91-97. DOI: 10.13332/j.1000-1522.20150453
    [7]YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
    [8]LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005
    [9]WU Sha-sha, PENG Dong-hui, LI Wen-qi, WANG Jing-mao, L&ucirc, Ying-min. Carbohydrate metabolism and activity variation of related enzymes during the exchanging role of bulb source and sink of oriental hybrid lily ‘Sorbonne'[J]. Journal of Beijing Forestry University, 2013, 35(6): 96-102.
    [10]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
  • Cited by

    Periodical cited type(5)

    1. 郑宇,孙明慧,刘勇,李国雷,王长伟,王苗苗,宋协海,常笑超,万芳芳,张劲,孟路. 密度和行距配置对毛白杨非结构性碳水化合物的影响. 广西林业科学. 2023(03): 291-296 .
    2. 王芳芳,郭素娟,廖逸宁,马雅莉. 覆草-施肥模式对板栗叶片功能性状与果实产量品质的影响. 北京林业大学学报. 2022(04): 36-46 . 本站查看
    3. 马雅莉,郭素娟. 叶幕微环境与板栗枝叶生长及果实产量的关系. 中南林业科技大学学报. 2021(04): 47-57 .
    4. 温雅洁,周生英,方强恩,胡桂馨. 蓟马为害对苜蓿叶茎显微结构的影响. 草地学报. 2021(12): 2703-2710 .
    5. 马雅莉,郭素娟. 板栗冠层光合特性的空间异质性研究. 北京林业大学学报. 2020(10): 71-83 . 本站查看

    Other cited types(2)

Catalog

    Article views (1830) PDF downloads (63) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return