• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Chunming, Zhang Huiru, Wang Zhuohui. Study on single tree survival model of mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis based on mixed effect model and survival analysis method[J]. Journal of Beijing Forestry University, 2022, 44(1): 1-8. DOI: 10.12171/j.1000-1522.20200112
Citation: Li Chunming, Zhang Huiru, Wang Zhuohui. Study on single tree survival model of mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis based on mixed effect model and survival analysis method[J]. Journal of Beijing Forestry University, 2022, 44(1): 1-8. DOI: 10.12171/j.1000-1522.20200112

Study on single tree survival model of mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis based on mixed effect model and survival analysis method

More Information
  • Received Date: April 15, 2020
  • Revised Date: May 29, 2021
  • Accepted Date: December 01, 2021
  • Available Online: December 05, 2021
  • Published Date: January 24, 2022
  •   Objective  Accurate prediction of tree mortality is a very important part of forest growth and yield model system. Constructing a tree survival model based on mixed effect model and survival analysis method can improve the precision of tree mortality model.
      Method  Taking the data of 20 sample plots of mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis in Wangqing Forestry Bureau of Jilin Province, northeastern China as the example, the tree mortality and survival model was constructed based on 6 parameter distribution models of survival analysis method (exponential distribution, Weibull distribution, log-normal distribution, log-Logistic distribution, Gompertz distribution, Gamma distribution), stand factor and site factor were added into the model as covariates. The sample plot’s random effect was considered and compared with the simulation effect of the traditional model.
      Result  With the increase of initial DBH, the risk of tree mortality decreased and the survival rate increased; with the increase of BAL, the risk of mortality increased and the survival rate decreased; with the increase of stand density per hectare, the probability of tree mortality increased and the survival rate decreased; the good-fitness of Weibull distribution model was the best; compared with the fixed effect model, the simulation accuracy of Weibull distribution model was greatly improved after considering the sample plot’s random effect, and reached a very significant degree.
      Conclusion  In forest management, if we want to improve the survival rate of trees, we should adopt scientific and reasonable management methods and management time to avoid excessive stand density.
  • [1]
    Monserud A R. Simulation of forest tree mortality[J]. Forest Science, 1976, 22: 438−444.
    [2]
    Hamilton D A, Jr. A logistic model of mortality in thinned and unthinned mixed conifer stands of northern Idaho[J]. Forest Science, 1986, 32: 989−1000.
    [3]
    Hann D W, Wang C H. Mortality equation for individual trees in the mixedconifer zone of southwest oregon[M]. Corvallis: Oregon State University, 1990.
    [4]
    Adame P, del Rio M, Canellas I. Modeling individual-tree mortality in Pyrenean oak (Quercus pyrenaica Willd.) stands[J]. Annualof Forest Science, 2010, 67(8): 810−815. doi: 10.1051/forest/2010046
    [5]
    Vanoni M, Bugmann H, Nötzli M, et al. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species[J]. Forest Ecology and Management, 2016, 382: 51−63. doi: 10.1016/j.foreco.2016.10.001
    [6]
    Woodall C W, Grambsch P L, Thomas W. Applying survival analysis to a large-scale forest inventory for assessment of tree mortality in Minnesota[J]. Ecology Modelling, 2005, 189: 199−208. doi: 10.1016/j.ecolmodel.2005.04.011
    [7]
    Lee Y J. Predicting mortality for even-ages stands of lodgepole pine[J]. Forestry Chronicle, 1971, 47: 29−32. doi: 10.5558/tfc47029-1
    [8]
    Moser J W. Dynamics of an uneven-aged forest stand[J]. Forest Science, 1972, 18: 184−191.
    [9]
    Harms W R. An empirical function for predicting survival over a wide range of densities[C]//Proceedings Second Biennial South Silvicultural Research Conference, 4–5 November 1982, Atlanta, GA. Atlanta: USDA Forest Service Gen. Tech. Rep. SE-24, 1983: 334−337.
    [10]
    Buford M A, Hafley W L. Modeling the probability of individual tree mortality[J]. Forest Science, 1985, 31(2): 331−341.
    [11]
    Kobe R K, Coates K D. Models of sapling mortality as a function of growth to characterize inter-specific variation in shade tolerance of eight tree species of northwestern British Columbia[J]. Canadian Journal of Forest Research, 1997, 27(2): 227−236. doi: 10.1139/x96-182
    [12]
    Chen C, Weiskittel A, Bataineh M, et al. Even low levels of spruce budworm defoliation affect mortality and ingrowth but net growth is more driven by competition[J]. Canadian Journal of Forest Research, 2017, 47(11): 1546−1556.
    [13]
    Zhao D, Borders B, Wang M, et al. Modeling mortality of second-rotation loblolly pine plantations in the piedmont/ upper coastal plain and lower coastal plain of the southern United States[J]. Forest Ecology and Management, 2007, 252(1−3): 132−143. doi: 10.1016/j.foreco.2007.06.030
    [14]
    Yang Y, Huang S. A generalized mixed logistic model for predicting individual tree survival probability with unequal measurement intervals[J]. Forest Science, 2013, 59(2): 177−187. doi: 10.5849/forsci.10-092
    [15]
    Boeck A, Dieler J, Biber P, et al. Predicting tree mortality for European beech in southern Germany using spatially explicit competition indices[J]. Forest Science, 2014, 60(4): 613−622. doi: 10.5849/forsci.12-133
    [16]
    Eerikainen K, Miina J, Valkonen S. Models for the regeneration establishment and the development of established seedlings in uneven-aged, Norway spruce dominated forest stands of southern Finland[J]. Forest Ecology and Management, 2007, 242: 444−461. doi: 10.1016/j.foreco.2007.01.078
    [17]
    Allison P D. Survival analysis using the SAS system, a practical guide[M]. Cary: SAS Institute, 1995.
    [18]
    Uzoh F C C, Mori S R. Applying survival analysis to managed even-aged stands of ponderosa pine for assessment of tree mortality in the western United States[J]. Forest Ecology and Management, 2012, 285: 101−122. doi: 10.1016/j.foreco.2012.08.006
    [19]
    Waters W E. Life-table approach to analysis of insect impact[J]. Journal of Forestry, 1969, 67: 300−304.
    [20]
    Fan Z F, Kabrick J M, Shifley S R. Classification and regression tree based survival analysis in oak-dominated forests of Missouris Ozark highlands[J]. Canadian Journal of Forest Research, 2006, 36: 1740−1748. doi: 10.1139/x06-068
    [21]
    von Gadow K, Kotze H, Seifert T, et al. Potential density and tree survival: an analysis based on South African spacing studies[J]. Southern Forests, 2014, 8: 1−8.
    [22]
    郭华, 王孝安, 王世雄, 等. 黄土高原子午岭辽东栎(Quercus liaotungensis) 幼苗动态生命表及生存分析[J]. 干旱区研究, 2011, 28(6):1005−1100.

    Guo H, Wang X A, Wang S X, et al. Dynamic life table and analysis on survival of Quercus liaotungensis seedlings in Mt. Ziwuling of the Loess Plateau[J]. Arid Zone Research, 2011, 28(6): 1005−1100.
    [23]
    Manso R, Pukkala T, Pardos M, et al. Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios[J]. Canadian Journal of Forest Research, 2014, 44: 250−262. doi: 10.1139/cjfr-2013-0179
    [24]
    Franklin J F, Shugart H H, Harmon M E. Death as an ecological process: the causes, consequences, and variability of tree mortality[J]. Bioscience, 1987, 37: 550−556. doi: 10.2307/1310665
    [25]
    Yang Y, Titus S J, Huang S. Modeling individual tree mortality for white spruce in Alberta[J]. Ecology Modelling, 2003, 163: 209−222. doi: 10.1016/S0304-3800(03)00008-5
    [26]
    李春明. 基于Cox比例风险函数及混合效应的落叶松云冷杉混交林林木枯损模型研究[J]. 林业科学研究, 2020, 33(3):92−98.

    Li C M. Mortality model of Larix olgensis-Abies nephrolepis-Picea jazoensis mixed stands based on cox proportional hazard function and mixed effect model[J]. Forest Research, 2020, 33(3): 92−98.
    [27]
    杜纪山. 落叶松林木枯损模型[J]. 林业科学, 1999, 35(2):45−49. doi: 10.3321/j.issn:1001-7488.1999.02.008

    Du J S. Tree mortality model of Larix[J]. Scientia Silvae Sinicae, 1999, 35(2): 45−49. doi: 10.3321/j.issn:1001-7488.1999.02.008
    [28]
    Yao X H, Titus S J, MacDonald S E. A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixed wood forests[J]. Canadian Journal of Forest Research, 2001, 31: 283−291.
    [29]
    Bigler C, Bugmann H. Growth-dependent tree mortality models based on tree rings[J]. Canadian Journal of Forest Research, 2003, 33: 210−221. doi: 10.1139/x02-180
    [30]
    Wunder J, Brzeziecki B, Zybura H, et al. Growth-mortality relationships as indicators of life-history strategies: a comparison of nine tree species in unmanaged European forests[J]. Oikos, 2008, 117: 815−828. doi: 10.1111/j.0030-1299.2008.16371.x
    [31]
    Hurst J M, Stewart G H, Perry G L, et al. Determinants of tree mortality in mixed old-growth Nothofagus forest[J]. Forest Ecology and Management, 2012, 270: 189−199. doi: 10.1016/j.foreco.2012.01.029
    [32]
    Timilsina N, Staudhammer C L. Individual tree mortality model for slash pine in Florida: a mixed modeling approach[J]. Southern Jounal of Apply Forest, 2012, 36(4): 211−219. doi: 10.5849/sjaf.11-026
    [33]
    Wu H, Franklin S B, Liu J M, et al. Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest[J]. Forest Ecology and Management, 2017, 384: 169−179. doi: 10.1016/j.foreco.2016.10.049
    [34]
    Moore J A, Hamilton D A, Jr, Xiao Y, et al. Bedrock type significantly affects individual tree mortality for various conifers in the inland northwest, USA[J]. Canadian Journal of Forest Research, 2004, 34: 31−42. doi: 10.1139/x03-196
    [35]
    Lawless J F. Statistical models and methods for lifetime data[M]. New York: John Wiley and Sons, 2003.
    [36]
    王建文. 生存分析参数回归模型拟合及其SAS实现[D]. 太原: 山西医科大学, 2008.

    Wang J W. The fitting of survival analysis and SAS implementation[D]. Taiyuan: Shanxi Medical University, 2008.
    [37]
    Rawlings J O, Pantula S G, Dickey D A. Applied regression analysis: a research tool[M]. 2nd ed. New York: Springer, 1998.
    [38]
    Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction[M]. New York: Springer, 2001.
    [39]
    Burnham K P, Anderson D R. Model selection and multi-model inference: a practical information-theoretic approach[M]. 2nd ed. New York: Springer, 2002.
    [40]
    李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73. doi: 10.11707/j.1001-7488.20120311

    Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73. doi: 10.11707/j.1001-7488.20120311
    [41]
    Sieg C H, Mcmillin J D, Fowler J F, et al. Best predictors for postfire mortality of ponderosa pine trees in the intermountain west[J]. Forest Science, 2006, 53(6): 718−728.
    [42]
    Thapa R, Burkhart H E. Modeling stand-level mortality of loblolly pine (Pinus taeda L.) using stand, climate, and soil variables[J]. Forest Science, 2014, 61(5): 834−846.
    [43]
    Ganio L M, Woolley T, Shaw D C, et al. The discriminatory ability of postfire tree mortality logistic regression models[J]. Forest Science, 2015, 61(2): 344−352. doi: 10.5849/forsci.13-146
    [44]
    李春明, 付卓. 基于非线性混合效应模型的3个针叶树种削度方程研究[J]. 西南林业大学学报(自然科学), 2021, 41(1):118−124.

    Li C M, Fu Z. The taper equation of 3 coniferous tree species based on nonlinear mixed effects models[J]. Journal of Southwest Forestry University (Natural Science), 2021, 41(1): 118−124.
    [45]
    Hallinger M, Johansson V, Schmalholz M, et al. Factors driving tree mortality in retained forest fragments[J]. Forest Ecology and Management, 2016, 368: 163−172. doi: 10.1016/j.foreco.2016.03.023
  • Related Articles

    [1]Peng Bolin, Yang Hua, Xie Rong. Effects of thinning on stand diameter structural heterogeneity and growth dominance in spruce-fir forests of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 34-42. DOI: 10.12171/j.1000-1522.20200401
    [2]Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133
    [3]Ou Qiangxin, Lei Xiangdong, Shen Chenchen, Song Guotao. Individual tree DBH growth prediction of larch-spruce-fir mixed forests based on random forest algorithm[J]. Journal of Beijing Forestry University, 2019, 41(9): 9-19. DOI: 10.13332/j.1000-1522.20180266
    [4]Zhu Zihui, Yang Hua, Zhang Heng, Wang Quanjun, Sun Quan, Yang Chao. Dynamic change of larch-spruce-fir mixed stand growth and structure after selective thinning[J]. Journal of Beijing Forestry University, 2018, 40(5): 55-62. DOI: 10.13332/j.1000-1522.20170358
    [5]Wang Shuo, Dong Li-hu, Li Feng-ri. Branch survival models of planted Larix olgensis tree[J]. Journal of Beijing Forestry University, 2018, 40(1): 57-66. DOI: 10.13332/j.1000-1522.20170203
    [6]WANG Man-lin, DONG Li-hu, LI Feng-ri. First-order branch number simulation for Larix olgensis plantation through Poisson regression mixed effect model[J]. Journal of Beijing Forestry University, 2017, 39(11): 45-55. DOI: 10.13332/j.1000-1522.20170204
    [7]LI Yan-li, YANG Hua, KANG Xin-gang, QIU Shi.. Population structures and dynamics of Abies nephrolepis and Picea koraiensis in the Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(3): 18-25. DOI: DOI:10.13332/j.cnki.jbfu.2014.03.003
    [8]LI Yao-xiang, JIANG Li-chun. Modeling wood tracheid length based on nonlinear mixed model for dahurian larch[J]. Journal of Beijing Forestry University, 2013, 35(3): 18-23.
    [9]WANG Hai-yan, LEI Xiang-dong, ZHANG Hui-ru, YANG Ping. Soil organic carbon in semi-natural mixed larch-spruce-fir stands of northeastern China.[J]. Journal of Beijing Forestry University, 2009, 31(3): 11-16.
    [10]XIANG Wei, LEI Xiang-dong, LIU Gang, XU Guang, CHEN Guang-fa. Individual tree mortality models for seminatural larchsprucefir forests in Jilin Province, northeastern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 90-98.
  • Cited by

    Periodical cited type(2)

    1. 武静,王丽,单晓飞,王喜明. 利用热压还原法制备3D-W/rGO导电材料. 林业工程学报. 2021(02): 84-93 .
    2. 张琪,宁莉萍,王彩云,王敏,沈赢洲,宁紫薇. 木质电磁屏蔽材料的研究现状及发展趋势. 化工新型材料. 2019(11): 24-28 .

    Other cited types(1)

Catalog

    Article views (988) PDF downloads (143) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return