Citation: | Li Chunming, Zhang Huiru, Wang Zhuohui. Study on single tree survival model of mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis based on mixed effect model and survival analysis method[J]. Journal of Beijing Forestry University, 2022, 44(1): 1-8. DOI: 10.12171/j.1000-1522.20200112 |
[1] |
Monserud A R. Simulation of forest tree mortality[J]. Forest Science, 1976, 22: 438−444.
|
[2] |
Hamilton D A, Jr. A logistic model of mortality in thinned and unthinned mixed conifer stands of northern Idaho[J]. Forest Science, 1986, 32: 989−1000.
|
[3] |
Hann D W, Wang C H. Mortality equation for individual trees in the mixedconifer zone of southwest oregon[M]. Corvallis: Oregon State University, 1990.
|
[4] |
Adame P, del Rio M, Canellas I. Modeling individual-tree mortality in Pyrenean oak (Quercus pyrenaica Willd.) stands[J]. Annualof Forest Science, 2010, 67(8): 810−815. doi: 10.1051/forest/2010046
|
[5] |
Vanoni M, Bugmann H, Nötzli M, et al. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species[J]. Forest Ecology and Management, 2016, 382: 51−63. doi: 10.1016/j.foreco.2016.10.001
|
[6] |
Woodall C W, Grambsch P L, Thomas W. Applying survival analysis to a large-scale forest inventory for assessment of tree mortality in Minnesota[J]. Ecology Modelling, 2005, 189: 199−208. doi: 10.1016/j.ecolmodel.2005.04.011
|
[7] |
Lee Y J. Predicting mortality for even-ages stands of lodgepole pine[J]. Forestry Chronicle, 1971, 47: 29−32. doi: 10.5558/tfc47029-1
|
[8] |
Moser J W. Dynamics of an uneven-aged forest stand[J]. Forest Science, 1972, 18: 184−191.
|
[9] |
Harms W R. An empirical function for predicting survival over a wide range of densities[C]//Proceedings Second Biennial South Silvicultural Research Conference, 4–5 November 1982, Atlanta, GA. Atlanta: USDA Forest Service Gen. Tech. Rep. SE-24, 1983: 334−337.
|
[10] |
Buford M A, Hafley W L. Modeling the probability of individual tree mortality[J]. Forest Science, 1985, 31(2): 331−341.
|
[11] |
Kobe R K, Coates K D. Models of sapling mortality as a function of growth to characterize inter-specific variation in shade tolerance of eight tree species of northwestern British Columbia[J]. Canadian Journal of Forest Research, 1997, 27(2): 227−236. doi: 10.1139/x96-182
|
[12] |
Chen C, Weiskittel A, Bataineh M, et al. Even low levels of spruce budworm defoliation affect mortality and ingrowth but net growth is more driven by competition[J]. Canadian Journal of Forest Research, 2017, 47(11): 1546−1556.
|
[13] |
Zhao D, Borders B, Wang M, et al. Modeling mortality of second-rotation loblolly pine plantations in the piedmont/ upper coastal plain and lower coastal plain of the southern United States[J]. Forest Ecology and Management, 2007, 252(1−3): 132−143. doi: 10.1016/j.foreco.2007.06.030
|
[14] |
Yang Y, Huang S. A generalized mixed logistic model for predicting individual tree survival probability with unequal measurement intervals[J]. Forest Science, 2013, 59(2): 177−187. doi: 10.5849/forsci.10-092
|
[15] |
Boeck A, Dieler J, Biber P, et al. Predicting tree mortality for European beech in southern Germany using spatially explicit competition indices[J]. Forest Science, 2014, 60(4): 613−622. doi: 10.5849/forsci.12-133
|
[16] |
Eerikainen K, Miina J, Valkonen S. Models for the regeneration establishment and the development of established seedlings in uneven-aged, Norway spruce dominated forest stands of southern Finland[J]. Forest Ecology and Management, 2007, 242: 444−461. doi: 10.1016/j.foreco.2007.01.078
|
[17] |
Allison P D. Survival analysis using the SAS system, a practical guide[M]. Cary: SAS Institute, 1995.
|
[18] |
Uzoh F C C, Mori S R. Applying survival analysis to managed even-aged stands of ponderosa pine for assessment of tree mortality in the western United States[J]. Forest Ecology and Management, 2012, 285: 101−122. doi: 10.1016/j.foreco.2012.08.006
|
[19] |
Waters W E. Life-table approach to analysis of insect impact[J]. Journal of Forestry, 1969, 67: 300−304.
|
[20] |
Fan Z F, Kabrick J M, Shifley S R. Classification and regression tree based survival analysis in oak-dominated forests of Missouris Ozark highlands[J]. Canadian Journal of Forest Research, 2006, 36: 1740−1748. doi: 10.1139/x06-068
|
[21] |
von Gadow K, Kotze H, Seifert T, et al. Potential density and tree survival: an analysis based on South African spacing studies[J]. Southern Forests, 2014, 8: 1−8.
|
[22] |
郭华, 王孝安, 王世雄, 等. 黄土高原子午岭辽东栎(Quercus liaotungensis) 幼苗动态生命表及生存分析[J]. 干旱区研究, 2011, 28(6):1005−1100.
Guo H, Wang X A, Wang S X, et al. Dynamic life table and analysis on survival of Quercus liaotungensis seedlings in Mt. Ziwuling of the Loess Plateau[J]. Arid Zone Research, 2011, 28(6): 1005−1100.
|
[23] |
Manso R, Pukkala T, Pardos M, et al. Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios[J]. Canadian Journal of Forest Research, 2014, 44: 250−262. doi: 10.1139/cjfr-2013-0179
|
[24] |
Franklin J F, Shugart H H, Harmon M E. Death as an ecological process: the causes, consequences, and variability of tree mortality[J]. Bioscience, 1987, 37: 550−556. doi: 10.2307/1310665
|
[25] |
Yang Y, Titus S J, Huang S. Modeling individual tree mortality for white spruce in Alberta[J]. Ecology Modelling, 2003, 163: 209−222. doi: 10.1016/S0304-3800(03)00008-5
|
[26] |
李春明. 基于Cox比例风险函数及混合效应的落叶松云冷杉混交林林木枯损模型研究[J]. 林业科学研究, 2020, 33(3):92−98.
Li C M. Mortality model of Larix olgensis-Abies nephrolepis-Picea jazoensis mixed stands based on cox proportional hazard function and mixed effect model[J]. Forest Research, 2020, 33(3): 92−98.
|
[27] |
杜纪山. 落叶松林木枯损模型[J]. 林业科学, 1999, 35(2):45−49. doi: 10.3321/j.issn:1001-7488.1999.02.008
Du J S. Tree mortality model of Larix[J]. Scientia Silvae Sinicae, 1999, 35(2): 45−49. doi: 10.3321/j.issn:1001-7488.1999.02.008
|
[28] |
Yao X H, Titus S J, MacDonald S E. A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixed wood forests[J]. Canadian Journal of Forest Research, 2001, 31: 283−291.
|
[29] |
Bigler C, Bugmann H. Growth-dependent tree mortality models based on tree rings[J]. Canadian Journal of Forest Research, 2003, 33: 210−221. doi: 10.1139/x02-180
|
[30] |
Wunder J, Brzeziecki B, Zybura H, et al. Growth-mortality relationships as indicators of life-history strategies: a comparison of nine tree species in unmanaged European forests[J]. Oikos, 2008, 117: 815−828. doi: 10.1111/j.0030-1299.2008.16371.x
|
[31] |
Hurst J M, Stewart G H, Perry G L, et al. Determinants of tree mortality in mixed old-growth Nothofagus forest[J]. Forest Ecology and Management, 2012, 270: 189−199. doi: 10.1016/j.foreco.2012.01.029
|
[32] |
Timilsina N, Staudhammer C L. Individual tree mortality model for slash pine in Florida: a mixed modeling approach[J]. Southern Jounal of Apply Forest, 2012, 36(4): 211−219. doi: 10.5849/sjaf.11-026
|
[33] |
Wu H, Franklin S B, Liu J M, et al. Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest[J]. Forest Ecology and Management, 2017, 384: 169−179. doi: 10.1016/j.foreco.2016.10.049
|
[34] |
Moore J A, Hamilton D A, Jr, Xiao Y, et al. Bedrock type significantly affects individual tree mortality for various conifers in the inland northwest, USA[J]. Canadian Journal of Forest Research, 2004, 34: 31−42. doi: 10.1139/x03-196
|
[35] |
Lawless J F. Statistical models and methods for lifetime data[M]. New York: John Wiley and Sons, 2003.
|
[36] |
王建文. 生存分析参数回归模型拟合及其SAS实现[D]. 太原: 山西医科大学, 2008.
Wang J W. The fitting of survival analysis and SAS implementation[D]. Taiyuan: Shanxi Medical University, 2008.
|
[37] |
Rawlings J O, Pantula S G, Dickey D A. Applied regression analysis: a research tool[M]. 2nd ed. New York: Springer, 1998.
|
[38] |
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction[M]. New York: Springer, 2001.
|
[39] |
Burnham K P, Anderson D R. Model selection and multi-model inference: a practical information-theoretic approach[M]. 2nd ed. New York: Springer, 2002.
|
[40] |
李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73. doi: 10.11707/j.1001-7488.20120311
Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73. doi: 10.11707/j.1001-7488.20120311
|
[41] |
Sieg C H, Mcmillin J D, Fowler J F, et al. Best predictors for postfire mortality of ponderosa pine trees in the intermountain west[J]. Forest Science, 2006, 53(6): 718−728.
|
[42] |
Thapa R, Burkhart H E. Modeling stand-level mortality of loblolly pine (Pinus taeda L.) using stand, climate, and soil variables[J]. Forest Science, 2014, 61(5): 834−846.
|
[43] |
Ganio L M, Woolley T, Shaw D C, et al. The discriminatory ability of postfire tree mortality logistic regression models[J]. Forest Science, 2015, 61(2): 344−352. doi: 10.5849/forsci.13-146
|
[44] |
李春明, 付卓. 基于非线性混合效应模型的3个针叶树种削度方程研究[J]. 西南林业大学学报(自然科学), 2021, 41(1):118−124.
Li C M, Fu Z. The taper equation of 3 coniferous tree species based on nonlinear mixed effects models[J]. Journal of Southwest Forestry University (Natural Science), 2021, 41(1): 118−124.
|
[45] |
Hallinger M, Johansson V, Schmalholz M, et al. Factors driving tree mortality in retained forest fragments[J]. Forest Ecology and Management, 2016, 368: 163−172. doi: 10.1016/j.foreco.2016.03.023
|
1. |
武静,王丽,单晓飞,王喜明. 利用热压还原法制备3D-W/rGO导电材料. 林业工程学报. 2021(02): 84-93 .
![]() | |
2. |
张琪,宁莉萍,王彩云,王敏,沈赢洲,宁紫薇. 木质电磁屏蔽材料的研究现状及发展趋势. 化工新型材料. 2019(11): 24-28 .
![]() |