• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Shuo, Dong Li-hu, Li Feng-ri. Branch survival models of planted Larix olgensis tree[J]. Journal of Beijing Forestry University, 2018, 40(1): 57-66. DOI: 10.13332/j.1000-1522.20170203
Citation: Wang Shuo, Dong Li-hu, Li Feng-ri. Branch survival models of planted Larix olgensis tree[J]. Journal of Beijing Forestry University, 2018, 40(1): 57-66. DOI: 10.13332/j.1000-1522.20170203

Branch survival models of planted Larix olgensis tree

More Information
  • Received Date: June 11, 2017
  • Revised Date: October 31, 2017
  • Published Date: December 31, 2017
  • ObjectiveThe quality of wood determines its value in production, and high-quality wood tends to earn higher profits. However, the size of the knot on the trunk can seriously affect the quality of wood, and the knot is formed after the death of branch. Therefore, by studying the properties of branches, looking for suitable ways of controlling the forest is of great significance to improve the quality of wood.
    MethodBased on the branch analysis data of 70 trees selected from 10 sample plots of Larix olgensis plantations in Mengjiagang Forest Farm of Jiamusi City, Linkou Forestry Bureau and Dongjingcheng Forestry Bureau, Heilongjiang Province of northeastern China, this paper develops classic Logistic model using traditional method and generalized linear mixed models (GLMM) to predict the branch survival of planted Larix olgensis tree. Goodness of fit tests and independence tests were implemented for all models.
    ResultThe branch survival was affected by many factors, like the degree of natural pruning of trees, the growth position of branches and the competition among trees.In the model, CR reflected the degree of natural pruning of trees, and the parameter value positive indicated that the natural pruning degree of trees was low and the branches were mostly in the living state.BRH and WHOLE reflected the growth position of branches in trees, and those negative parameter values showed that the branches in the upper part of the canopy grew well due to the sufficient light, and the branches in the lower part of the canopy died early due to mutual shadowing.HD reflected the competition between trees, and the negative parameter value showed that the intense competitive environment could reduce the survival probability of branches.AICs, RMSEs, AUCs and the correctness of model judgment can be used to compare the prediction effect of basic model and GLMM. The calculated AIC = 801.67, RMSE = 0.126, AUC = 0.9975 and the correctness of model judgment was 97.9% of GLMM. GLMM had obvious smaller AIC, smaller RMSE, larger AUC and larger correct rate. Thus, GLMM could efficiently solve the problem of the variation among different individuals, and improve the accuracy of predicting the branch survival status. The accuracy of the model was good in the independence test.
    ConclusionThis study would provide the theoretical basis for determining reasonable management measures and improving the timber quality for Larix olgensis plantation.
  • [1]
    张天雄.落叶松枝条特征研究概述[J].科技创新与应用, 2014(10): 255. http://d.old.wanfangdata.com.cn/Periodical/qgsj201410249

    Zhang T X. A research of larch branches feature[J]. Technology Innovation and Application, 2014(10): 255. http://d.old.wanfangdata.com.cn/Periodical/qgsj201410249
    [2]
    姜立春, 潘莹, 李耀翔.兴安落叶松枝条特征联立方程组模型及树冠形状模拟[J].北京林业大学学报, 2016, 38(6):1-7. doi: 10.13332/j.1000-1522.20150339

    Jiang L C, Pan Y, Li Y X. Model systems of branch characteristics and crown profile simulation for Larix gmelinii[J].Journal of Beijing Forestry University, 2016, 38(6):1-7. doi: 10.13332/j.1000-1522.20150339
    [3]
    贾炜玮.樟子松人工林枝条生长及节子大小预测模型的研究[D].哈尔滨: 东北林业大学, 2006.

    Jia W W. Predicting models of branch growth and knot properties for Mongolian scots pine in plantation[D]. Harbin: Northeast Forestry University, 2006.
    [4]
    Kershaw J A, Maguire D A, Hann D W. Longevity and duration of radial growth in Douglas-fir branches[J]. Canadian Journal of Forest Research, 1990, 20:1690-1695. doi: 10.1139/x90-225
    [5]
    Makinen H, Colin F. Predicting the number, death, and self-pruning of branches in Scots pine[J]. Canadian Journal of Forest Research, 1999, 29(8):1225-1236. doi: 10.1139/x99-065
    [6]
    康萌萌.广义线性混合模型及其SAS实现[J].统计教育, 2009(10): 50-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902734686

    Kang M M. Generalized linear mixed models and implementation with SAS[J]. Statistical Thinktank, 2009(10): 50-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200902734686
    [7]
    姜立春, 李凤日, 张锐.基于线性混合模型的落叶松枝条基径模型[J].林业科学研究, 2012, 25(4):464-469. doi: 10.3969/j.issn.1001-1498.2012.04.009

    Jiang L C, Li F R, Zhang R. Modeling branch diameter with linear mixed effects for Dahurian larch[J]. Forest Research, 2012, 25(4): 464-469. doi: 10.3969/j.issn.1001-1498.2012.04.009
    [8]
    姜立春, 杜书立, 李凤日.基于随机效应的兴安落叶松材积生长模拟[J].应用生态学报, 2011, 22(11):2963-2969. http://d.old.wanfangdata.com.cn/Periodical/yystxb201111025

    Jiang L C, Du S L, Li F R. Simulation of Larix gmelinii tree volume growth based on random effect[J]. Chinese Journal of Applied Ecology, 2011, 22(11):2963-2969. http://d.old.wanfangdata.com.cn/Periodical/yystxb201111025
    [9]
    董灵波, 刘兆刚, 李凤日, 等.基于线性混合模型的红松人工林一级枝条大小预测模拟[J].应用生态学报, 2013, 24(9):2447-2456. http://d.old.wanfangdata.com.cn/Periodical/yystxb201309008

    Dong L B, Liu Z G, Li F R, et al. Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model[J]. Chinese Journal of Applied Ecology, 2013, 24(9):2447-2456. http://d.old.wanfangdata.com.cn/Periodical/yystxb201309008
    [10]
    王曼霖, 董利虎, 李凤日.基于Possion回归混合效应模型的长白落叶松一级枝数量模拟[J].北京林业大学学报, 2017, 39(11): 45-55. doi: 10.13332/j.1000-1522.20170204

    Wang M L, Dong L H, Li F R. First-order branch number simulation for Larix olgensis plantation through Poisson regression mixed effect model[J].Journal of Beijing Forestry University, 2017, 39(11): 45-55. doi: 10.13332/j.1000-1522.20170204
    [11]
    Hein S, Makinen H, Yue C F, et al. Modelling branch characteristics of Norway spruce from wide spacings in Germany[J]. Forest Ecology and Management, 2007, 242:155-164. doi: 10.1016/j.foreco.2007.01.014
    [12]
    张智昌.落叶松人工林枝条生长与节子大小预测模型的研究[D].哈尔滨: 东北林业大学, 2010.

    Zhang Z C. Predicting models of branch growth and knot properties for larch plantation[D]. Harbin: Northeast Forestry University, 2010.
    [13]
    卢军, 李凤日.樟子松人工林的节子寿命及年轮丢失数[J].林业科学, 2007, 43(12): 16-21. http://d.old.wanfangdata.com.cn/Periodical/lykx200712003

    Lu J, Li F R. Long and missing ring of knots in Pinus sylvertris var. mongolica plantation[J]. Science Silvae Sinicae, 2007, 43(12): 16-21. http://d.old.wanfangdata.com.cn/Periodical/lykx200712003
    [14]
    高瑞馨, 尹艳豹, 王凤友.黑龙江林口林业局森林景观格局特征[J].生态学杂志, 2007, 26(7): 995-1001. doi: 10.3321/j.issn:1000-4890.2007.07.006

    Gao R X, Yin Y B, Wang F Y. Characters of forest landscape patterns in Linkou Forestry Bureau of Heilongjiang Province[J]. Chinese Journal of Ecology, 2007, 26(7): 995-1001. doi: 10.3321/j.issn:1000-4890.2007.07.006
    [15]
    高瑞馨.林口林业局可持续发展综合评价指标体系研究[D].哈尔滨: 东北林业大学, 2004.

    Gao R X. Research on the comprehensive appraisement index system about sustainable development of the Linkou Forestry Bureau[D]. Harbin: Northeast Forestry University, 2004.
    [16]
    徐衍武.东京城林业局森林水源涵养价值评估[J].内蒙古林业调查设计, 2014, 37(5): 94-96. doi: 10.3969/j.issn.1006-6993.2014.05.043

    Xu Y W. The assessment of forest water conservation value of Dongjingcheng Forestry Bureau[J]. Inner Mongolia Forestry Investigation and Design, 2014, 37(5): 94-96. doi: 10.3969/j.issn.1006-6993.2014.05.043
    [17]
    孟宪宇.测树学[M].北京:中国林业出版社, 2006.

    Meng X Y. Forest mensuration[M]. Beijing:China Forestry Publishing House, 2006.
    [18]
    刘强, 董利虎, 李凤日, 等.长白落叶松冠层光合作用的空间异质性[J].应用生态学报, 2016, 27(9): 2789-2796. http://d.old.wanfangdata.com.cn/Periodical/yystxb201609008

    Liu Q, Dong L H, Li F R, et al. Spatial heterogeneity of canopy photosynthesis for Larix olgensis[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2789-2796. http://d.old.wanfangdata.com.cn/Periodical/yystxb201609008
    [19]
    王济川, 郭志刚.Logistic回归模型:方法与应用[M].北京:高等教育出版社, 2001.

    Wang J C, Guo Z G. Logistic regression models: methods and application[M]. Beijing: Higher Education Press, 2001.
    [20]
    Weiskittel A, Maguire D. Response of branch growth and mortality to silvicultural treatments in coastal Douglas-fir plantations: implications for predicting tree growth[J]. Forest Ecology and Management, 2007, 251:182-194. doi: 10.1016/j.foreco.2007.06.007
    [21]
    苗铮, 董利虎, 李凤日, 等.基于GLMM的人工林红松二级枝条分布数量模拟[J].南京林业大学学报(自然科学版), 2017, 41(4):121-128. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201704019

    Miao Z, Dong L H, Li F R, et al.Modelling the vertical variation in the number of second order branches of Pinus koraiensis plantation trees through GLMM[J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(4):121-128. http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201704019
    [22]
    宋喜芳, 李建平, 胡希远.模型选择信息量准则AIC及其在方差分析中的应用[J].西北农林科技大学学报(自然科学版), 2009, 37(2): 88-92. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200902015

    Song X F, Li J P, Hu X Y. Model selection criterion AIC and its application in ANOVA[J]. Journal of Northwest A & F University (Natural Science Edition), 2009, 37(2): 88-92. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb200902015
    [23]
    王春红, 李凤日, 贾炜玮, 等.基于非线性混合模型的红松人工林枝条生长[J].应用生态学报, 2013, 24(7): 1945-1952. http://d.old.wanfangdata.com.cn/Periodical/yystxb201307023

    Wang C H, Li F R, Jia W W, et al. Branch growth of Korean pine plantation based on nonlinear mixed model[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1945-1952. http://d.old.wanfangdata.com.cn/Periodical/yystxb201307023
    [24]
    王烁, 李凤日, 甄贞.白河林业局红松分布数量预估模型[J].东北林业大学学报, 2014, 42(10): 38-43. doi: 10.3969/j.issn.1000-5382.2014.10.009

    Wang S, Li F R, Zhen Z. Predicting models of tree distribution of Korean pine in Baihe Forestry Bureau[J]. Journal of Northeast Forestry University, 2014, 42(10): 38-43. doi: 10.3969/j.issn.1000-5382.2014.10.009
    [25]
    王烁, 李凤日, 赵颖慧, 等.基于空间模型的白河林业局天然红松分布[J].北京林业大学学报, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105

    Wang S, Li F R, Zhao Y H, et al. Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models[J]. Journal of Beijing Forestry University, 2015, 37(10): 73-85. doi: 10.13332/j.1000-1522.20150105
    [26]
    Heins S, Weiskittel A R. Cutpoint analysis for models with binary outcomes: a case study on branch mortality[J]. European Journal of Forest Research, 2010, 129:585-590. doi: 10.1007/s10342-010-0358-3
    [27]
    夏业茂, 刘应安, 房政.广义Logistic回归模型Bayes分析及其在林木存活率预报中的应用[J].南京林业大学学报(自然科学版), 2010, 34(2): 47-50. doi: 10.3969/j.issn.1000-2006.2010.02.010

    Xia Y M, Liu Y A, Fang Z. Bayes analysis for generalized Logistic regression model and its application to forestry survival rate[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2010, 34(2): 47-50. doi: 10.3969/j.issn.1000-2006.2010.02.010
    [28]
    李凤日, 王治富, 王保森.落叶松人工林有效冠动态研究(Ⅰ)[J].东北林业大学学报, 1996, 24(1): 1-8. http://cdmd.cnki.com.cn/Article/CDMD-10225-2010242512.htm

    Li F R, Wang Z F, Wang B S. Studies on the effective crown development of Larix olgensis (Ⅰ)[J]. Journal of Northeast Forestry University, 1996, 24(1): 1-8. http://cdmd.cnki.com.cn/Article/CDMD-10225-2010242512.htm
  • Related Articles

    [1]Wu Xinhua, Miao Zheng, Hao Yuanshuo, Dong Lihu. Mixed effect model of stem density of Populus nigra × P. simonii based on beta regression[J]. Journal of Beijing Forestry University, 2023, 45(5): 67-78. DOI: 10.12171/j.1000-1522.20220450
    [2]He Mengying, Dong Lihu, Li Fengri. Crown width prediction models for Larix olgensis and Fraxinus mandshurica mixed plantations[J]. Journal of Beijing Forestry University, 2020, 42(7): 23-32. DOI: 10.12171/j.1000-1522.20190250
    [3]Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296
    [4]Niu Yilong, Dong Lihu, Li Fengri. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation[J]. Journal of Beijing Forestry University, 2020, 42(2): 9-18. DOI: 10.12171/j.1000-1522.20190036
    [5]Xu Qigang, Lei Xiangdong, Guo Hong, Li Haikui, Li Yutang. Stand biomass model of Larix olgensis plantations based on multi-layer perceptron networks[J]. Journal of Beijing Forestry University, 2019, 41(5): 97-107. DOI: 10.13332/j.1000-1522.20190035
    [6]Wang Tao, Dong Lihu, Li Fengri. Individual tree mortality model for hybrid larch young plantations based on mixed effects[J]. Journal of Beijing Forestry University, 2018, 40(10): 1-10. DOI: 10.13332/j.1000-1522.20170437
    [7]WANG Man-lin, DONG Li-hu, LI Feng-ri. First-order branch number simulation for Larix olgensis plantation through Poisson regression mixed effect model[J]. Journal of Beijing Forestry University, 2017, 39(11): 45-55. DOI: 10.13332/j.1000-1522.20170204
    [8]WANG Shuo, LI Feng-ri, ZHAO Ying-hui, ZHEN-zhen.. Distribution of natural Korean pines in Baihe Forestry Bureau based on spatial models.[J]. Journal of Beijing Forestry University, 2015, 37(10): 73-85. DOI: 10.13332/j.1000-1522.20150105
    [9]MA You-ping, , FENG Zhong-ke, DONG Bin, AI Xun-ru. Genetic algorithm solution for Logistic model parameters.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 192-195.
    [10]LEI Xiang-dong, ZHANG Ze-lu, CHEN Xiao-guang. Crown-width prediction models for several tree species including Larix olgensis in northeastern China[J]. Journal of Beijing Forestry University, 2006, 28(6): 75-79.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return