• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Gao Zhongliang, Li Zhi, Wei Jianheng, Long Tengteng, Wang Qiuhua, Shu Lifu. Study on forest road of fireproof blockade functions based on PyroSim[J]. Journal of Beijing Forestry University, 2020, 42(9): 51-60. DOI: 10.12171/j.1000-1522.20200140
Citation: Gao Zhongliang, Li Zhi, Wei Jianheng, Long Tengteng, Wang Qiuhua, Shu Lifu. Study on forest road of fireproof blockade functions based on PyroSim[J]. Journal of Beijing Forestry University, 2020, 42(9): 51-60. DOI: 10.12171/j.1000-1522.20200140

Study on forest road of fireproof blockade functions based on PyroSim

More Information
  • Received Date: May 29, 2020
  • Revised Date: July 16, 2020
  • Available Online: August 23, 2020
  • Published Date: September 29, 2020
  •   Objective  Forest road network and its width is the basic demands of forestry production, transportation, and tourism. While giving maximum economic benefits, its function on forest fire patrol monitoring, emergency rescue, rapid transport of firefighters and equipment when happening fires also should be taken into account, as well as the function of block forest fire spreading and forest fire isolation.
      Method  The micro-mountains model of Pinus yunnanensis was constructed using fire dynamic simulation software PyroSim with parameters including slopes of 25°, 35° and 45°, wind speed of 1 , 2.5 and 4.5 m/s, and forest-road widths of 2, 4.5 and 6 m. And with the application of belt fire source with 12 m in length and 6 m in width, and heat release rate of 4.6 × 104 kW/m2, which simulated moderate-intensity forest-fire, we aimed to study fire-isolating functions at different forest-road widths.
      Result  The forest road width of 2 m failed to meet the need for fire protection and isolation. And the one with 4.5 m achieved relatively poor fire-isolating function performance. And the one with more than 35° slope and greater than 4.5 m/s wind speed was easy to lose its function. And 6 m width road got a strong fire isolation function. Comparing with the one that can better isolate medium-intensity forest-fire spreading condition can meet the one with less than 4.5 m/s wind speed and less than 45° slope. When wind speed reached more than 4.5 m/s, the fireproof blockade functions of forest-road width of 6 m may be lost. Generally, the central temperature of moderate-intensity forest fire was about 700−1 200 ℃. And corresponding heat release rate power can reach 3.0 × 105 − 9.0 × 105 kW. And it only took about 1 min to spread 10 m on the hill. And the burning rate of combustibles can reach above 40 kg/s in the 60 s.
      Conclusion  It is suggested to build the road with 6 m width in P. yunnanensis district in Yunnan Province of southwestern China, which can achieve better fire-prevention benefits. And road with width of 8−10 m is highly recommended in the forest area, where the stands with higher tree height all year round suffering high wind speed and slope greater than 45°. It also approve that the feasibility of simulating forest-road fire-isolating function by constructing the fire-site model with PyroSim, the results in this study have certain guiding significance on the rational designs of forest-road constructions, such as the determinations of maximum threshold values of fire prevention functions of forest-road with indexes of densities and widths, so can achieve certain economic benefits, as well as reductions of destructive powers of forest fires.
  • [1]
    叶兵. 国内外森林防火技术及其发展趋势[D]. 北京: 中国林业科学研究院, 2000.

    Ye B. The present situation and development tendency of domestic and abroad technical level of forest fire prevention[D]. Beijing: China Academy of Forestry Research Institute of Forestry, 2000.
    [2]
    Picchio P, Pignatti G, Marchi E, et al. The application of two approaches using GIS technology implementation in forest road network planning in an Italian mountain setting[J]. Forests, 2018, 9(5): 277. doi: 10.3390/f9050277
    [3]
    Buday E, Akay A E. Evaluation of forest road network planning in landslide sensitive areas by GIS-based multi-criteria decision making approaches in Ihsangazi Watershed, northern Turkey[J]. Šumarski List, 2019, 143(7−8): 325−336.
    [4]
    Akay O A, Akgul M, Demir M, et al. Analysis of factors associated with the amount of forest road reconstruction activity in Turkey: autoregressive distributed lag modelling approach[J]. Forest Ecology and Management, 2020, 458: 117800.
    [5]
    Keramati A, Lu P, Sobhani A, et al. Impact of forest road maintenance policies on log transportation cost, routing, and carbon-emission trade-offs: oregon case study[J]. Journal of Transportation Engineering, Part A: Systems, 2020, 146(5): 04020028. doi: 10.1061/JTEPBS.0000335
    [6]
    Çalışkan E, Karahalil U. Evaluation of forest road network and determining wood extraction system using GIS: a case study in Anbardağ planning unit[J]. Sumarski List, 2017, 141(3−4): 163−171. doi: 10.31298/sl.141.3-4.6
    [7]
    Petković V, Potočnik I. Planning forest road network in natural forest areas: a case study in northern bosnia and herzegovina[J]. Croatian Journal of Forest Engineering, 2018, 39(1): 45−56.
    [8]
    Tan J. Planning a forest road network by a spatial data handling-network routing system[J]. Acta Forestalia Fennical, 1992, 227: 26−41.
    [9]
    Hrůza P, Mikita T, Tyagur N, et al. Detecting forest road wearing course damage using different methods of remote sensing[J]. Remote Sensing, 2018, 10(4): 492. doi: 10.3390/rs10040492
    [10]
    Fallahchai M M, Haghverdi K, Mojam M S, et al. Ecological effects of forest roads on plant species diversity in Caspian forests of Iran[J]. Acta Ecologica Sinica, 2018, 38(3): 255−261. doi: 10.1016/j.chnaes.2017.08.002
    [11]
    Andrea L, Cristiano F, Fabio F, et al. Forest road planning, construction and maintenance to improve forest fire fighting: a review[J]. Croatian Journal of Forest Engineering, 2019, 40(1): 207−219.
    [12]
    Schöning D R, Bachmann D A, Allgöwer D B. GIS-based framework for wildfire risk assessment final report MINerve2[R]. Zurich:University of Zurich,1997.
    [13]
    邱荣祖, 方金武, 詹正宜, 等. 林道网理论研究的历史回顾与展望[J]. 福建林学院学报, 2000, 20(4):370−374. doi: 10.3969/j.issn.1001-389X.2000.04.022

    Qiu R Z, Fang J W, Zhan Z Y, et a1. A review and prospect for the research of forest road network[J]. Journal of Fujian College of Forestry, 2000, 20(4): 370−374. doi: 10.3969/j.issn.1001-389X.2000.04.022
    [14]
    罗康. 基于GIS技术的北京市森林防火资源布局的分析[D]. 株洲: 中南林学院, 2003.

    Luo K. GIS-based layout analysis of forest fire protection in Beijing[D]. Zhuzhou: Central South Forestry College, 2003.
    [15]
    王国华. 森林地面防火资源调控技术研究[D]. 株洲: 中南林业科技大学, 2009.

    Wang G H. The technology research of ground-based resources for forest fire control and adjust[D]. Zhuzhou: Central South University of Forestry and Technology, 2009.
    [16]
    邱荣祖, 邓志华. 林道网的森林火灾防治效益评价[J]. 森林防火, 1998(4):21−22.

    Qiu R Z, Deng Z H. Evaluation on forest road network of forest fire prevention benefit[J]. Forest Fire Prevention, 1998(4): 21−22.
    [17]
    张国红. 我国森林防火阻隔系统建设现状与思考[J]. 林业资源管理, 2008(4):15−18. doi: 10.3969/j.issn.1002-6622.2008.04.005

    Zhang G H. Present situation and thoughts on the development of the forest fire prevention and obstruction system in China[J]. Forest Resources Management, 2008(4): 15−18. doi: 10.3969/j.issn.1002-6622.2008.04.005
    [18]
    Sun R Y, Jenkins M A, Krueger S K, et al. An evaluation of fire-plume properties simulated with the fire dynamics simulator (FDS) and the Clark coupled wildfire model[J]. Canadian Journal of Forest Research, 2006, 36(11): 2894−2908. doi: 10.1139/x06-138
    [19]
    尚超, 王克印, 黄海英, 等. 基于的火灾树木建模研究[J]. 消防科学与技术, 2013, 32(9):1030−1033. doi: 10.3969/j.issn.1009-0029.2013.09.030

    Shang C, Wang K Y, Huang H Y, et al. Forest trees in fire model research based on the Pyrosim[J]. Fire Science and Tecnnology, 2013, 32(9): 1030−1033. doi: 10.3969/j.issn.1009-0029.2013.09.030
    [20]
    关祥毅, 刘少刚. 樟子松树冠火燃烧场数学模型的研究[EB/OL]. 北京: 中国科技论文在线(2013−01−25) [2019−09−25]. http://www.paper.edu.cn/releasepaper/content/201301-1040.

    Guan X Y, Liu S G. Research on the mathematical model of mongolian Scots pine crown fire burning area[EB/OL]. Beijing: Sciencepaper Online (2013−01−25) [2019−09−25]. http://www.paper.edu.cn/releasepaper/content/201301-1040.
    [21]
    辛喆, 王顺喜, 云峰, 等. 基于火灾模拟软件的草原火灾蔓延规律数值分析[J]. 农业工程学报, 2012, 8(10):54−57.

    Xin Z, Wang S X, Yun F, et al. Numerical analysis on spreading laws of grassland fire based on fire dynamics simulator (FDS)[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 8(10): 54−57.
    [22]
    李世友. 滇中森林可燃物燃烧性及林火行为研究[D]. 北京: 中国林业科学研究院, 2014.

    Li S Y. Study on the combustibility of forest fuels and fire behavior in central Yunnan Province[D]. Beijing: China Academy of Forestry Research Institute of Forestry, 2014.
    [23]
    Morvan D, Hoffman C, Rego F, et a1. Numerical simulation of the interaction between two fire fronts in grassland and shrubland[J]. Fire Safety Journal, 2011, 46(8): 469−479. doi: 10.1016/j.firesaf.2011.07.008
    [24]
    Overholt K J, Cabrera J, Kurzawski A, et a1. Characterization of fuel properties and fire spread rates for little bluestem grass[J]. Fire Technology, 2014, 50(1): 9−38. doi: 10.1007/s10694-012-0266-9
    [25]
    Miloua H. Fire behavior characteristics in a pine needle fuel bed in northwest Africa[J]. Journal of Forestry Research, 2019, 30(3): 959−967. doi: 10.1007/s11676-018-0676-8
    [26]
    Mell W E, Manzello S L, Maranghides A. Numerical modeling of fire spread through trees and shrubs[J]. Forest Ecology and Management, 2006, 234(1): S82.
    [27]
    Mell W E, Jenkins M A, Gould J, et a1. A physics-based approach to modeling grassland fires[J]. International Journal of Wildland Fire, 2007, 16(1): 1−22. doi: 10.1071/WF06002
    [28]
    程远平. 火灾过程中火源热释放速率模型及其实验测试方法[J]. 火灾科学, 2002, 11(2):70−74. doi: 10.3969/j.issn.1004-5309.2002.02.002

    Cheng Y P. The model and experimental testing method of heat release rate of fuel during the development of fire[J]. Fire Safety Science, 2002, 11(2): 70−74. doi: 10.3969/j.issn.1004-5309.2002.02.002
    [29]
    Jones W W, Forney G P, Peacock R D, et a1. A technical reference for CFAST: an engineering tool for estimating fire and smoke transport [R]. Gaithersburg: Building and Fire Research Laboratory, 2000.
    [30]
    Jones W W, Peacock R D, Forney G P, et al. Verification and validation of CFAST: a model of fire growth and smoke spread[R]. Washington: National Institute of Standards and Technology, 2004.
    [31]
    Nelson H E. An engineering analysis of the early stages of fire development-the fire at the dupont plaza hotel and casino, December 31, 1986[R/OL].(1987−05−29)[2019−01−22]. https://doi.org/10.6028/NBS.IR.87−3560.
    [32]
    中华人民共和国林业部.林区公路路线设计规范: LYJ 113—1992 [S].北京: 中国标准出版社, 1997.

    National Forestry Administration. Design specification of road for forest highway:LYJ 113−1992[S]. Beijing: Standards Press of China,1993.
    [33]
    张志斌, 杨莹, 张小平, 等. 我国西南地区风速变化及其影响因素[J]. 生态学报, 2014, 34(2):471−481.

    Zhang Z B, Yang Y, Zhang X P, et a1. Wind speed changes and its influencing factors in southwestern China[J]. Acta Ecologica Sinica, 2014, 34(2): 471−481.
    [34]
    王秋华. 森林火灾燃烧过程中的火行为研究[D]. 北京: 中国林业科学研究院, 2010.

    Wang Q H. Study on fire behaviors in forest burning[D]. Beijing: Chinese Academy of Forestry, 2010.
  • Related Articles

    [1]Wang Zijian, Ye Meixia, Zhang Han, Wu Rongling. Mixed-effect model development for functional mapping[J]. Journal of Beijing Forestry University, 2024, 46(5): 163-172. DOI: 10.12171/j.1000-1522.20220416
    [2]Hao Minhui, Dai Ying, Yue Qingmin, Fan Chunyu, Zhang Chunyu. Relationship between functional diversity of broadleaved Korean pine forest and forest carbon sink function[J]. Journal of Beijing Forestry University, 2022, 44(10): 68-76. DOI: 10.12171/j.1000-1522.20220237
    [3]Fu Yujie, Tian Di, Hou Zhengyang, Wang Minggang, Zhang Naili. Review on the evaluation of global forest carbon sink function[J]. Journal of Beijing Forestry University, 2022, 44(10): 1-10. DOI: 10.12171/j.1000-1522.20220242
    [4]Feng Jialin, Liu Congcong, Qi Xiangyu, Di Zexin, Lu Yizeng, Zheng Jian. Cloning and functional analysis of heat shock protein SpHSP70-3 gene from Sorbus pohuashanensis[J]. Journal of Beijing Forestry University, 2022, 44(9): 52-61. DOI: 10.12171/j.1000-1522.20210235
    [5]Zhu Jiyou, Yu Qiang, Liu Yapei, Qin Guoming, Li Jinhang, Xu Chengyang, He Weijun. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72-81. DOI: 10.13332/j.1000-1522.20180132
    [6]ZHENG Tang-chun, ZANG Li-na, DING Hao, QU Guan-zheng.. Functional characterization of BpMADS3 gene from Betula platyphylla.[J]. Journal of Beijing Forestry University, 2014, 36(1): 1-7.
    [7]ZHAO Guang-jie, LIU Wen-jing. Activation and functionalization of wooden carbon fiber materials[J]. Journal of Beijing Forestry University, 2012, 34(6): 152-154.
    [8]LI Bo, LI Bin, YANG Hong-ze. Preliminary studies on the functional and structural design of forest fire helmet[J]. Journal of Beijing Forestry University, 2010, 32(6): 155-158.
    [9]SHANG Shu-jiao, ZHOU Yan, LOU Xing-liang, GAO Shu-min, FAN Chun-xia. Research on UBL5 gene and its product structure and function[J]. Journal of Beijing Forestry University, 2010, 32(5): 172-176.
    [10]HOU Peng, JIANG Wei-guo, CAO Guang-zhen. Quantitative analyses of thermal regulation function of urban wetland[J]. Journal of Beijing Forestry University, 2010, 32(3): 191-196.
  • Cited by

    Periodical cited type(11)

    1. 闫凯达,赵凤君,司莉青,舒立福,王明玉,李伟克,韩冬,李笑笑,周暖阳. 林火阻隔带和阻隔体系研究进展. 林业科学. 2025(01): 197-208 .
    2. 高发兴. 开远市森林防火工作现状及对策. 绿色科技. 2024(03): 177-181+203 .
    3. 鲁源,王劲,洪瑞成,万龙杰,王儒龙,王秋华. 林火阻隔系统研究进展. 林业科技通讯. 2024(11): 13-18 .
    4. 李聪聪,凌晨冰,孟祥俊伟,肖庆彪,冯立言,江文强. 火灾环境下特高压钢管塔的最小安全距离研究. 电力科学与工程. 2023(02): 72-78 .
    5. 梁新宇,王笑松. 黑龙江省工程防火阻隔带现状及发展趋势分析. 林业科技. 2023(03): 65-66+70 .
    6. 高发兴. 浅论林火管理发展的三个阶段及工作重心. 森林防火. 2023(02): 11-15 .
    7. 陈兵,赵凤君,范太云,吴莉娟,江智全,赵爽,叶江霞. 西昌市森林防火综合阻隔网空间布局. 林业科学. 2023(09): 127-138 .
    8. 崔荣凯,钱良辉,王秋华. 森林道路网络的消防功能评价研究进展. 世界林业研究. 2023(06): 32-37 .
    9. 何龙,张炳罡. 西藏地区森林防火阻隔带作用研究. 消防界(电子版). 2023(10): 81-83 .
    10. 李梓雯. 森林防火现状问题与防火体系建设对策研究——以河南省新乡市为例. 森林防火. 2022(01): 6-9+14 .
    11. 刘春迎,辛颖. 红松林地表凋落物层燃烧数值模拟. 消防科学与技术. 2021(10): 1534-1538 .

    Other cited types(1)

Catalog

    Article views (1892) PDF downloads (128) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return