• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhu Jiyou, Yu Qiang, Liu Yapei, Qin Guoming, Li Jinhang, Xu Chengyang, He Weijun. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72-81. DOI: 10.13332/j.1000-1522.20180132
Citation: Zhu Jiyou, Yu Qiang, Liu Yapei, Qin Guoming, Li Jinhang, Xu Chengyang, He Weijun. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72-81. DOI: 10.13332/j.1000-1522.20180132

Response of plant functional traits and leaf economics spectrum to urban thermal environment

More Information
  • Received Date: April 12, 2018
  • Revised Date: July 15, 2018
  • Published Date: August 31, 2018
  • ObjectiveExploring variations of plant functional traits and leaf economics spectrum along urban thermal environment provides a chemical basis for examining species strategies as shaped by their local habitat.
    MethodIn this study, we quantified the land surface temperature, soil moisture content and leaf functional traits of Sophora japonica, Koelreuteria paniculate and Fraxinus pennsylvanica, which were grown in urban thermal environment in Beijing.
    Result(1) The urban thermal environment significantly increased the land surface temperature (P < 0.05), and showed high temperature region(HTR)>low temperature region(CTR); the soil moisture content was CTR>HTR, but the difference was not significant(P>0.05). (2) There were some differences in the effects of urban thermal environment on different tree species. The effects of urban thermal environment on Sophora japonica and Koelreuteria paniculate were mainly originated from high temperature stress, and its effects on Fraxinus pennsylvanica were mainly originated from drought stress, especially in high temperature environments. (3) The relationships between leaf traits under the urban thermal environment were similar to those on the global scale. Specific leaf area (SLA) presented significant negative correlation with chlorophyll content (CHL), leaf dry matter content (LDMC) and leaf tissue density(LTD) (P < 0.01). CHL presented significant positive correlation with LDMC and LTD (P < 0.01), and there was a positive correlation between LDMC and LTD (P < 0.05). Stomatal density(SD) showed a negative correlation with stomatal size(SS), stomatal aperture(SA) and SLA, but they did not reach a significant level (P>0.05). (4) RDA results showed that SLA was mainly affected by land surface temperature (R2=0.97, P < 0.05), but soil moisture content had negative effects on plant functional traits (R2=0.75, P < 0.05). Land surface temperature had positive effects on LDMC, LTD, and CHL, but soil moisture content had negative effects on them.
    ConclusionThe results of this study indicated that a leaf economics spectrum also existed in plant species in the urban thermal environment with a quick investment-return on the leaf economics spectrum. The species in HTR had lower SLA, SS and SA, higher CHL, LDMC, LTD and SD, which may be involved in the adaptation of plants to high-temperature and arid conditions. Therefore, when planting plants in urban areas, heat-resistant and drought-tolerant tree species should be selected in HTR. At the same time, the effects of high temperature should be reduced by increasing cooling and irrigation in the growing season.
  • [1]
    Pitman S D, Daniels C B, Ely M E. Green infrastructure as life support: urban nature and climate change[J]. Transactions of the Royal Society of South Australia, 2015, 139(1): 97-112. doi: 10.1080/03721426.2015.1035219
    [2]
    Priyadarsini R, Hien W N, David C K W. Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island[J]. Solar Energy, 2008, 82(8):727-745. doi: 10.1016/j.solener.2008.02.008
    [3]
    Nowak D J, Hoehn R E, Bodine A R, et al. Urban forest structure, ecosystem services and change in Syracuse, NY[J]. Urban Ecosystems, 2016, 19(4): 1455-1477. doi: 10.1007/s11252-013-0326-z
    [4]
    Duan J L, Song X, Zhang X L. Spatiotemporal variation of urban heat island in Zhengzhou City based on RS DUAN[J]. Chinese Journal of Applied Ecology, 2011(1): 165-170. http://d.old.wanfangdata.com.cn/Periodical/yystxb201101025
    [5]
    侯鹏, 蒋卫国, 曹广真.城市湿地热环境调节功能的定量研究[J].北京林业大学学报, 2010, 32(3): 191-196. http://j.bjfu.edu.cn/article/id/9401

    Hou P, Jiang W G, Cao G Z. Quantitative analyses of thermal regulation function of urban wetland[J]. Journal of Beijing Forestry University, 2010, 32(3): 191-196. http://j.bjfu.edu.cn/article/id/9401
    [6]
    Lun I, Mochida A, Ooka R. Progress in numerical modelling for urban thermal environment studies[J]. Advances in Building Energy Research, 2009, 3(1):147-188. doi: 10.3763/aber.2009.0306
    [7]
    Fernández F J, Alvarez-Vázquez L J, García-Chan N, et al. Optimal location of green zones in metropolitan areas to control the urban heat island[J]. Journal of Computational & Applied Mathematics, 2015, 289(C): 412-425. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=535aeb0174944032dec2f1cd450cc68b
    [8]
    冯悦怡, 胡潭高, 张力小.城市公园景观空间结构对其热环境效应的影响[J].生态学报, 2014, 34(12) : 3179-3187. http://d.old.wanfangdata.com.cn/Periodical/stxb201412006

    Feng Y Y, Hu T G, Zhang L X. Impacts of structure characteristics on the thermal environment effect of city parks[J]. Acta Ecologica Sinica, 2014, 34(12):3179-3187. http://d.old.wanfangdata.com.cn/Periodical/stxb201412006
    [9]
    武鹏飞, 王茂军, 张学霞.北京市植被绿度与城市热岛关系研究[J].北京林业大学学报, 2009, 31(5): 54-60. doi: 10.3321/j.issn:1000-1522.2009.05.010

    Wu P F, Wang M J, Zhang X X. Relationship between vegetation greenness and urban heat island effect in Beijing[J]. Journal of Beijing Forestry University, 2009, 31(5): 54-60. doi: 10.3321/j.issn:1000-1522.2009.05.010
    [10]
    Priyadarsini R, Hien W N, David C K W. Microclimatic modelingof the urban thermal environment of Singapore to mitigate urban heat island[J]. Solar Energy, 2008, 82(8): 727-745. doi: 10.1016/j.solener.2008.02.008
    [11]
    王亚婷, 范连连.城市热岛对植物生长的影响以及叶片形态构成的适应性[J].生态学报, 2011, 30(20): 5992-5998. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201120015

    Wang Y T, Fan L L. Effect of urban heat island on plant growth and adaptability of leaf morphology constitute[J]. Acta Ecologica Sinica, 2011, 30(20): 5992-5998. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201120015
    [12]
    Shipley B, Lechowicz M J, Wright I, et al. Fundamental trade-offs generating the worldwide leaf economics spectrum[J]. Ecology, 2006, 87(3): 535-541. doi: 10.1890/05-1051
    [13]
    Royer D L, Miller I M, Peppe D J, et al. Leaf economic traits from fossils support a weedy habit for early angiosperms[J]. American Journal of Botany, 2010, 97(3): 438-445. doi: 10.3732/ajb.0900290
    [14]
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821. doi: 10.1038/nature02403
    [15]
    陈莹婷, 许振柱.植物叶经济谱的研究进展[J].植物生态学报, 2014, 38(10): 1135-1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012

    Chen Y T, Xu Z Z. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135-1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012
    [16]
    张耘, 于强, 李梦莹, 等.基于EnKF-3DVar模型的海淀区地表温度模拟[J].农业机械学报, 2017, 48(9): 166-172. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201709021

    Zhang Y, Yu Q, Li M Y, et al. Simulation of land surface temperature in Haidian District based on EnKF-3DVar model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 166-172. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201709021
    [17]
    江樟焰, 陈云浩, 李京.基于Landsat TM数据的北京城市热岛研究[J].武汉大学学报(信息科学版), 2006, 31(2):120-123. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200602007

    Jiang Z Y, Chen Y H, Li J. Heat island effect of Beijng based on Landsat TM data[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 120-123. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200602007
    [18]
    朱济友, 徐程扬, 吴鞠.基于eCognition植物叶片气孔密度及气孔面积快速测算方法[J].北京林业大学学报, 2018, 40(5): 37-45. doi: 10.13332/j.1000-1522.20170412

    Zhu J Y, Xu C Y, Wu J. Fast estimation of stomatal density and stomatal area of plant leaves based on eCognition[J]. Journal of Beijing Forestry University, 2018, 40(5): 37-45. doi: 10.13332/j.1000-1522.20170412
    [19]
    张立荣, 牛海山, 汪诗平, 等.增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响[J].生态学报, 2010, 30(24): 6961-6969. http://d.old.wanfangdata.com.cn/Periodical/stxb201024033

    Zhang L R, Niu H S, Wang S P, et al. Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species, Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2010, 30(24): 6961-6969. http://d.old.wanfangdata.com.cn/Periodical/stxb201024033
    [20]
    陈媛媛, 江波, 王效科, 等.元宝枫幼苗生长和光合特性对硬化地表的响应[J].生态学杂志, 2016, 35(12): 3258-3265. http://d.old.wanfangdata.com.cn/Periodical/stxzz201612015

    Chen Y Y, Jiang B, Wang X K, et al. Responses of growth and photosynthetic characteristics of Acer truncatum seedlings to hardening pavements[J]. Chinese Journal of Ecology, 2016, 35(12): 3258-3265. http://d.old.wanfangdata.com.cn/Periodical/stxzz201612015
    [21]
    叶子奇, 邓如军, 王雨辰, 等.胡杨繁殖根系分枝特征及其与土壤因子的关联性[J].北京林业大学学报, 2018, 40(2): 31-39. doi: 10.13332/j.1000-1522.20170426

    Ye Z Q, Deng R J, Wang Y C, et al. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39. doi: 10.13332/j.1000-1522.20170426
    [22]
    陈媛媛, 江波, 王效科, 等.北京典型绿化树种幼苗光合特性对硬化地表的响应[J].生态学报, 2017, 37(11): 3673-3682. http://d.old.wanfangdata.com.cn/Periodical/stxb201711009

    Chen Y Y, Jiang B, Wang X K, et al. Effect of pavement on the leaf photosynthetic characteristics of saplings of three common tree species (Pinus tabulaeformis, Fraxinus chinensis, and Acer truncatum) in Beijing[J]. Acta Ecologica Sinica, 2017, 37(11): 3673-3682. http://d.old.wanfangdata.com.cn/Periodical/stxb201711009
    [23]
    杨锐, 张博睿, 王玲玲, 等.元谋干热河谷植物功能性状组合的海拔梯度响应[J].生态环境学报, 2015, 24(1): 49-56. http://d.old.wanfangdata.com.cn/Periodical/tryhj2015010009

    Yang R, Zhang B R, Wang L L, et al. The response of plant functional traits' group to gradients of altitude in dry-hot valley of Yuan-Mou[J]. Ecology and Environmental Sciences, 2015, 24(1): 49-56. http://d.old.wanfangdata.com.cn/Periodical/tryhj2015010009
    [24]
    韩威, 刘超, 樊艳文, 等.长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征[J].北京林业大学学报, 2014, 36(4): 47-53. doi: 10.13332/j.cnki.jbfu.2014.04.012

    Han W, Liu C, Fan Y W, et al. Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(4): 47-53. doi: 10.13332/j.cnki.jbfu.2014.04.012
    [25]
    Garnier E, Cortez J, Billès G, et al. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 2004, 85(9): 2630-2637. doi: 10.1890/03-0799
    [26]
    Lavorel S, Grigulis K, Lamarque P, et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services[J]. Journal of Ecology, 2011, 99(1): 135-147. doi: 10.1111/jec.2010.99.issue-1
    [27]
    Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2010, 12(4): 351-366. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216596116/
    [28]
    Murru V, Marignani M, Acosta A T R, et al. Bryophytes in Mediterranean coastal dunes: ecological strategies and distribution along the vegetation zonation[J]. Plant Biosystems, 2018(1): 1-8. http://cn.bing.com/academic/profile?id=b917109773ae5a77e7b0710f54f52e5d&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    Huang H, Ooka R, Kato S. Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer[J]. Atmospheric Environment, 2005, 39(34): 6362-6375. doi: 10.1016/j.atmosenv.2005.07.018
    [30]
    黄群芳, 陆玉麒.短期大规模人口流动对上海市城市热岛的影响[J].气候与环境研究, 2017, 22(6): 708-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj201706006

    Huang Q F, Lu Y Q. Effects of short-term massive human migration during the Chinese new year on the urban heat island effect in Shanghai[J]. Climatic and Environmental Research, 2017, 22(6): 708-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj201706006
    [31]
    Freschet G T, Cornelissen J H C, Logtestijn R S P, et al. Evidence of the 'plant economics spectrum' in a subarctic flora[J]. Journal of Ecology, 2010, 98(2): 362-373. doi: 10.1111/jec.2010.98.issue-2
    [32]
    Mason C M, Donovan L A. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny[J]. Oecologia, 2015, 177(4): 1053-1066. doi: 10.1007/s00442-014-3177-2
    [33]
    Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal Botany, 2003, 51(4): 335-380. doi: 10.1071/BT02124
    [34]
    Wang H, Chen H. Plant functional groups based on vegetative and reproductive traits in a subtropical forest community[J]. Journal of Forest Research, 2013, 18(6): 482-490. doi: 10.1007/s10310-012-0376-8
    [35]
    Swenson N G. The functional ecology and diversity of tropical tree assemblages through space and time: from local to regional and from traits to transcriptomes[J]. Isrn Forestry, 2013, 2012(2): 133-140. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_42c46ee37d9ba9663a3dcdbf9129987b
    [36]
    赵新风, 徐海量, 张鹏, 等.养分与水分添加对荒漠草地植物群落结构和物种多样性的影响[J].植物生态学报, 2014, 38(2): 167-177. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201402008

    Zhao X F, Xu H L, Zhang P, et al. Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 167-177. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201402008
    [37]
    王均伟, 侯嫚嫚, 黄利亚, 等.长白山阔叶红松林系统发育和功能性状beta多样性[J].北京林业大学学报, 2016, 38(10): 21-27. doi: 10.13332/j.1000-1522.20160062

    Wang J W, Hou M M, Huang L Y, et al. Phylogenetic and functional beta diversity in a broadleaved Korean pine mixed forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(10): 21-27. doi: 10.13332/j.1000-1522.20160062
    [38]
    任昱, 卢琦, 吴波, 等.不同模拟增雨下白刺比叶面积和叶干物质含量的比较[J].生态学报, 2015, 35(14): 4707-4715. http://d.old.wanfangdata.com.cn/Periodical/stxb201514016

    Ren Y, Lu Q, Wu B, et al. Specific leaf area and leaf dry matter content of Nitraria tangutorum in the artificially simulated precipitation[J]. Acta Ecologica Sinica, 2015, 35(14): 4707-4715. http://d.old.wanfangdata.com.cn/Periodical/stxb201514016
    [39]
    张林, 罗天祥, 邓坤枚, 等.云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律[J].北京林业大学学报, 2008, 30(1): 40-44. doi: 10.3321/j.issn:1000-1522.2008.01.007

    Zhang L, Luo T X, Deng K M, et al. Vertical variations in specific leaf area and leaf dry matter content with canopy height in Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2008, 30(1): 40-44. doi: 10.3321/j.issn:1000-1522.2008.01.007
    [40]
    张桐, 洪秀玲, 孙立炜, 等. 6种植物叶片的滞尘能力与其叶面结构的关系[J].北京林业大学学报, 2017, 39(6): 70-77. doi: 10.13332/j.1000-1522.20170012

    Zhang T, Hong X L, Sun L W, et al. Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis[J]. Journal of Beijing Forestry University, 2017, 39(6): 70-77. doi: 10.13332/j.1000-1522.20170012
    [41]
    徐振锋, 胡庭兴, 张力, 等.模拟增温对川西亚高山林线交错带绵穗柳生长、叶物候和叶性状的影响[J].应用生态学报, 2009, 20(1): 7-12. http://d.old.wanfangdata.com.cn/Periodical/yystxb200901002

    Xu Z F, Hu T X, Zhang L, et al. Effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in subalpine timberline ecotone of western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2009, 20(1): 7-12. http://d.old.wanfangdata.com.cn/Periodical/yystxb200901002
    [42]
    赵文霞, 邹斌, 郑景明, 等.常绿阔叶林常见树种根茎叶功能性状的相关性[J].北京林业大学学报, 2016, 38(6): 35-41. doi: 10.13332/j.1000-1522.20160087

    Zhao W X, Zou B, Zheng J M, et al. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. doi: 10.13332/j.1000-1522.20160087
    [43]
    杨士梭, 温仲明, 苗连朋, 等.黄土丘陵区植物功能性状对微地形变化的响应[J].应用生态学报, 2014, 25(12): 3413-3419. http://d.old.wanfangdata.com.cn/Periodical/yystxb201412005

    Yang S S, Wen Z M, Miao L P, et al. Responses of plant functional traits to micro-topographical changes in hilly and gully region of the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3413-3419. http://d.old.wanfangdata.com.cn/Periodical/yystxb201412005
    [44]
    Marteinsdóttir B, Eriksson O. Plant community assembly in seminatural grasslands and eaarable fields: a trait-based approach[J]. Journal of Vegetation Science, 2013, 25(1): 77-87. http://cn.bing.com/academic/profile?id=8fe18906bc882def9011dfce9c0fe6b5&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]Zhang Fengyuan, Su Yuanhang, Liu Binhui. Response characteristics of NDVI to asymmetric diurnal temperature increase and precipitation changes during the forest growing season in Northeast China[J]. Journal of Beijing Forestry University, 2023, 45(2): 34-48. DOI: 10.12171/j.1000-1522.20210396
    [2]Liu Xiaoshuang, Li Caiwen, Zhao Yibing. Rapid detection of object-level invaded forest map patch based on high spatial resolution time series image[J]. Journal of Beijing Forestry University, 2022, 44(11): 60-69. DOI: 10.12171/j.1000-1522.20210261
    [3]Yang Can, Wei Tianxing, Li Yiran, Zheng Liang, Chen Yuxuan. Spatiotemporal variations of NDVI before and after implementation of Grain for Green Project in wind-water erosion crisscross region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(6): 83-91. DOI: 10.12171/j.1000-1522.20210128
    [4]Jia Jingwei, Niu Jianzhi, Lin Xingna, Zhu Zhijun, Wu Shanshan. Temporal and spatial variations of NDVI and its driving factors in the Yanghe Watershed of northern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 106-115. DOI: 10.13332/j.1000-1522.20180046
    [5]Liu Zhengcai, Qu Yaoyao. Vegetation change and its response to climate change based on SPOT-VGT in Hunan Province of southern China[J]. Journal of Beijing Forestry University, 2019, 41(2): 80-87. DOI: 10.13332/j.1000-1522.20180278
    [6]Zhang Xu, Song Wenqi, Zhao Huiying, Zhu Liangjun, Wang Xiaochun. Variation of July NDVI recorded by tree-ring index of Pinus koraiensis and Abies nephrolepis forests in the southern Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 9-17. DOI: 10.13332/j.1000-1522.20180295
    [7]Zhu Yakun, Qin Shugao, Zhang Yuqing, Zhang Jutao, Shao Yanying, Gao Yan. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98-106. DOI: 10.13332/j.1000-1522.20180020
    [8]Zhang Cai, Zha Tianshan, Jia Xin, Liu Peng, Li Cheng. Dynamics and simulation of leaf area index for Artemisia ordosica community in the Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(3): 75-83. DOI: 10.13332/j.1000-1522.20170298
    [9]WANG Ge, HAN Lin, ZHANG Yu, . Temporal variation and spatial distribution of NDVI in northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91.
    [10]SONG Fu-qiang, KANG Mu-yi, YANG Peng, CHEN Ya-ru, LIU Yang, XING Kai-xiong.. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 72-80.
  • Cited by

    Periodical cited type(5)

    1. 胡慧玲,高凡,唐小雨,摆丽萍,肖宇峰,张富森. 北疆地区季节性积雪物理特性分析. 陕西水利. 2020(01): 1-3+6 .
    2. 郭建平. 植物对降水截留的研究进展. 应用气象学报. 2020(06): 641-652 .
    3. 唐小雨,高凡,闫正龙,彭亮. 有无遮蔽条件下季节性积雪分层物理特性对比分析. 灌溉排水学报. 2019(11): 74-84 .
    4. 林尤伟,蔡体久,段亮亮. 大兴安岭北部兴安落叶松林雪水文特征. 北京林业大学学报. 2018(06): 72-80 . 本站查看
    5. 孙弘哲,马大龙,臧淑英,吴祥文. 大兴安岭多年冻土区不同林型土壤微生物群落特征. 冰川冻土. 2018(05): 1028-1036 .

    Other cited types(11)

Catalog

    Article views (3926) PDF downloads (124) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return