• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhu Jiyou, Yu Qiang, Liu Yapei, Qin Guoming, Li Jinhang, Xu Chengyang, He Weijun. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72-81. DOI: 10.13332/j.1000-1522.20180132
Citation: Zhu Jiyou, Yu Qiang, Liu Yapei, Qin Guoming, Li Jinhang, Xu Chengyang, He Weijun. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72-81. DOI: 10.13332/j.1000-1522.20180132

Response of plant functional traits and leaf economics spectrum to urban thermal environment

More Information
  • Received Date: April 12, 2018
  • Revised Date: July 15, 2018
  • Published Date: August 31, 2018
  • ObjectiveExploring variations of plant functional traits and leaf economics spectrum along urban thermal environment provides a chemical basis for examining species strategies as shaped by their local habitat.
    MethodIn this study, we quantified the land surface temperature, soil moisture content and leaf functional traits of Sophora japonica, Koelreuteria paniculate and Fraxinus pennsylvanica, which were grown in urban thermal environment in Beijing.
    Result(1) The urban thermal environment significantly increased the land surface temperature (P < 0.05), and showed high temperature region(HTR)>low temperature region(CTR); the soil moisture content was CTR>HTR, but the difference was not significant(P>0.05). (2) There were some differences in the effects of urban thermal environment on different tree species. The effects of urban thermal environment on Sophora japonica and Koelreuteria paniculate were mainly originated from high temperature stress, and its effects on Fraxinus pennsylvanica were mainly originated from drought stress, especially in high temperature environments. (3) The relationships between leaf traits under the urban thermal environment were similar to those on the global scale. Specific leaf area (SLA) presented significant negative correlation with chlorophyll content (CHL), leaf dry matter content (LDMC) and leaf tissue density(LTD) (P < 0.01). CHL presented significant positive correlation with LDMC and LTD (P < 0.01), and there was a positive correlation between LDMC and LTD (P < 0.05). Stomatal density(SD) showed a negative correlation with stomatal size(SS), stomatal aperture(SA) and SLA, but they did not reach a significant level (P>0.05). (4) RDA results showed that SLA was mainly affected by land surface temperature (R2=0.97, P < 0.05), but soil moisture content had negative effects on plant functional traits (R2=0.75, P < 0.05). Land surface temperature had positive effects on LDMC, LTD, and CHL, but soil moisture content had negative effects on them.
    ConclusionThe results of this study indicated that a leaf economics spectrum also existed in plant species in the urban thermal environment with a quick investment-return on the leaf economics spectrum. The species in HTR had lower SLA, SS and SA, higher CHL, LDMC, LTD and SD, which may be involved in the adaptation of plants to high-temperature and arid conditions. Therefore, when planting plants in urban areas, heat-resistant and drought-tolerant tree species should be selected in HTR. At the same time, the effects of high temperature should be reduced by increasing cooling and irrigation in the growing season.
  • [1]
    Pitman S D, Daniels C B, Ely M E. Green infrastructure as life support: urban nature and climate change[J]. Transactions of the Royal Society of South Australia, 2015, 139(1): 97-112. doi: 10.1080/03721426.2015.1035219
    [2]
    Priyadarsini R, Hien W N, David C K W. Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island[J]. Solar Energy, 2008, 82(8):727-745. doi: 10.1016/j.solener.2008.02.008
    [3]
    Nowak D J, Hoehn R E, Bodine A R, et al. Urban forest structure, ecosystem services and change in Syracuse, NY[J]. Urban Ecosystems, 2016, 19(4): 1455-1477. doi: 10.1007/s11252-013-0326-z
    [4]
    Duan J L, Song X, Zhang X L. Spatiotemporal variation of urban heat island in Zhengzhou City based on RS DUAN[J]. Chinese Journal of Applied Ecology, 2011(1): 165-170. http://d.old.wanfangdata.com.cn/Periodical/yystxb201101025
    [5]
    侯鹏, 蒋卫国, 曹广真.城市湿地热环境调节功能的定量研究[J].北京林业大学学报, 2010, 32(3): 191-196. http://j.bjfu.edu.cn/article/id/9401

    Hou P, Jiang W G, Cao G Z. Quantitative analyses of thermal regulation function of urban wetland[J]. Journal of Beijing Forestry University, 2010, 32(3): 191-196. http://j.bjfu.edu.cn/article/id/9401
    [6]
    Lun I, Mochida A, Ooka R. Progress in numerical modelling for urban thermal environment studies[J]. Advances in Building Energy Research, 2009, 3(1):147-188. doi: 10.3763/aber.2009.0306
    [7]
    Fernández F J, Alvarez-Vázquez L J, García-Chan N, et al. Optimal location of green zones in metropolitan areas to control the urban heat island[J]. Journal of Computational & Applied Mathematics, 2015, 289(C): 412-425. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=535aeb0174944032dec2f1cd450cc68b
    [8]
    冯悦怡, 胡潭高, 张力小.城市公园景观空间结构对其热环境效应的影响[J].生态学报, 2014, 34(12) : 3179-3187. http://d.old.wanfangdata.com.cn/Periodical/stxb201412006

    Feng Y Y, Hu T G, Zhang L X. Impacts of structure characteristics on the thermal environment effect of city parks[J]. Acta Ecologica Sinica, 2014, 34(12):3179-3187. http://d.old.wanfangdata.com.cn/Periodical/stxb201412006
    [9]
    武鹏飞, 王茂军, 张学霞.北京市植被绿度与城市热岛关系研究[J].北京林业大学学报, 2009, 31(5): 54-60. doi: 10.3321/j.issn:1000-1522.2009.05.010

    Wu P F, Wang M J, Zhang X X. Relationship between vegetation greenness and urban heat island effect in Beijing[J]. Journal of Beijing Forestry University, 2009, 31(5): 54-60. doi: 10.3321/j.issn:1000-1522.2009.05.010
    [10]
    Priyadarsini R, Hien W N, David C K W. Microclimatic modelingof the urban thermal environment of Singapore to mitigate urban heat island[J]. Solar Energy, 2008, 82(8): 727-745. doi: 10.1016/j.solener.2008.02.008
    [11]
    王亚婷, 范连连.城市热岛对植物生长的影响以及叶片形态构成的适应性[J].生态学报, 2011, 30(20): 5992-5998. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201120015

    Wang Y T, Fan L L. Effect of urban heat island on plant growth and adaptability of leaf morphology constitute[J]. Acta Ecologica Sinica, 2011, 30(20): 5992-5998. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201120015
    [12]
    Shipley B, Lechowicz M J, Wright I, et al. Fundamental trade-offs generating the worldwide leaf economics spectrum[J]. Ecology, 2006, 87(3): 535-541. doi: 10.1890/05-1051
    [13]
    Royer D L, Miller I M, Peppe D J, et al. Leaf economic traits from fossils support a weedy habit for early angiosperms[J]. American Journal of Botany, 2010, 97(3): 438-445. doi: 10.3732/ajb.0900290
    [14]
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821. doi: 10.1038/nature02403
    [15]
    陈莹婷, 许振柱.植物叶经济谱的研究进展[J].植物生态学报, 2014, 38(10): 1135-1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012

    Chen Y T, Xu Z Z. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135-1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012
    [16]
    张耘, 于强, 李梦莹, 等.基于EnKF-3DVar模型的海淀区地表温度模拟[J].农业机械学报, 2017, 48(9): 166-172. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201709021

    Zhang Y, Yu Q, Li M Y, et al. Simulation of land surface temperature in Haidian District based on EnKF-3DVar model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 166-172. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201709021
    [17]
    江樟焰, 陈云浩, 李京.基于Landsat TM数据的北京城市热岛研究[J].武汉大学学报(信息科学版), 2006, 31(2):120-123. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200602007

    Jiang Z Y, Chen Y H, Li J. Heat island effect of Beijng based on Landsat TM data[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 120-123. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200602007
    [18]
    朱济友, 徐程扬, 吴鞠.基于eCognition植物叶片气孔密度及气孔面积快速测算方法[J].北京林业大学学报, 2018, 40(5): 37-45. doi: 10.13332/j.1000-1522.20170412

    Zhu J Y, Xu C Y, Wu J. Fast estimation of stomatal density and stomatal area of plant leaves based on eCognition[J]. Journal of Beijing Forestry University, 2018, 40(5): 37-45. doi: 10.13332/j.1000-1522.20170412
    [19]
    张立荣, 牛海山, 汪诗平, 等.增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响[J].生态学报, 2010, 30(24): 6961-6969. http://d.old.wanfangdata.com.cn/Periodical/stxb201024033

    Zhang L R, Niu H S, Wang S P, et al. Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species, Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2010, 30(24): 6961-6969. http://d.old.wanfangdata.com.cn/Periodical/stxb201024033
    [20]
    陈媛媛, 江波, 王效科, 等.元宝枫幼苗生长和光合特性对硬化地表的响应[J].生态学杂志, 2016, 35(12): 3258-3265. http://d.old.wanfangdata.com.cn/Periodical/stxzz201612015

    Chen Y Y, Jiang B, Wang X K, et al. Responses of growth and photosynthetic characteristics of Acer truncatum seedlings to hardening pavements[J]. Chinese Journal of Ecology, 2016, 35(12): 3258-3265. http://d.old.wanfangdata.com.cn/Periodical/stxzz201612015
    [21]
    叶子奇, 邓如军, 王雨辰, 等.胡杨繁殖根系分枝特征及其与土壤因子的关联性[J].北京林业大学学报, 2018, 40(2): 31-39. doi: 10.13332/j.1000-1522.20170426

    Ye Z Q, Deng R J, Wang Y C, et al. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39. doi: 10.13332/j.1000-1522.20170426
    [22]
    陈媛媛, 江波, 王效科, 等.北京典型绿化树种幼苗光合特性对硬化地表的响应[J].生态学报, 2017, 37(11): 3673-3682. http://d.old.wanfangdata.com.cn/Periodical/stxb201711009

    Chen Y Y, Jiang B, Wang X K, et al. Effect of pavement on the leaf photosynthetic characteristics of saplings of three common tree species (Pinus tabulaeformis, Fraxinus chinensis, and Acer truncatum) in Beijing[J]. Acta Ecologica Sinica, 2017, 37(11): 3673-3682. http://d.old.wanfangdata.com.cn/Periodical/stxb201711009
    [23]
    杨锐, 张博睿, 王玲玲, 等.元谋干热河谷植物功能性状组合的海拔梯度响应[J].生态环境学报, 2015, 24(1): 49-56. http://d.old.wanfangdata.com.cn/Periodical/tryhj2015010009

    Yang R, Zhang B R, Wang L L, et al. The response of plant functional traits' group to gradients of altitude in dry-hot valley of Yuan-Mou[J]. Ecology and Environmental Sciences, 2015, 24(1): 49-56. http://d.old.wanfangdata.com.cn/Periodical/tryhj2015010009
    [24]
    韩威, 刘超, 樊艳文, 等.长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征[J].北京林业大学学报, 2014, 36(4): 47-53. doi: 10.13332/j.cnki.jbfu.2014.04.012

    Han W, Liu C, Fan Y W, et al. Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(4): 47-53. doi: 10.13332/j.cnki.jbfu.2014.04.012
    [25]
    Garnier E, Cortez J, Billès G, et al. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 2004, 85(9): 2630-2637. doi: 10.1890/03-0799
    [26]
    Lavorel S, Grigulis K, Lamarque P, et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services[J]. Journal of Ecology, 2011, 99(1): 135-147. doi: 10.1111/jec.2010.99.issue-1
    [27]
    Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2010, 12(4): 351-366. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216596116/
    [28]
    Murru V, Marignani M, Acosta A T R, et al. Bryophytes in Mediterranean coastal dunes: ecological strategies and distribution along the vegetation zonation[J]. Plant Biosystems, 2018(1): 1-8. http://cn.bing.com/academic/profile?id=b917109773ae5a77e7b0710f54f52e5d&encoded=0&v=paper_preview&mkt=zh-cn
    [29]
    Huang H, Ooka R, Kato S. Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer[J]. Atmospheric Environment, 2005, 39(34): 6362-6375. doi: 10.1016/j.atmosenv.2005.07.018
    [30]
    黄群芳, 陆玉麒.短期大规模人口流动对上海市城市热岛的影响[J].气候与环境研究, 2017, 22(6): 708-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj201706006

    Huang Q F, Lu Y Q. Effects of short-term massive human migration during the Chinese new year on the urban heat island effect in Shanghai[J]. Climatic and Environmental Research, 2017, 22(6): 708-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj201706006
    [31]
    Freschet G T, Cornelissen J H C, Logtestijn R S P, et al. Evidence of the 'plant economics spectrum' in a subarctic flora[J]. Journal of Ecology, 2010, 98(2): 362-373. doi: 10.1111/jec.2010.98.issue-2
    [32]
    Mason C M, Donovan L A. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny[J]. Oecologia, 2015, 177(4): 1053-1066. doi: 10.1007/s00442-014-3177-2
    [33]
    Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal Botany, 2003, 51(4): 335-380. doi: 10.1071/BT02124
    [34]
    Wang H, Chen H. Plant functional groups based on vegetative and reproductive traits in a subtropical forest community[J]. Journal of Forest Research, 2013, 18(6): 482-490. doi: 10.1007/s10310-012-0376-8
    [35]
    Swenson N G. The functional ecology and diversity of tropical tree assemblages through space and time: from local to regional and from traits to transcriptomes[J]. Isrn Forestry, 2013, 2012(2): 133-140. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_42c46ee37d9ba9663a3dcdbf9129987b
    [36]
    赵新风, 徐海量, 张鹏, 等.养分与水分添加对荒漠草地植物群落结构和物种多样性的影响[J].植物生态学报, 2014, 38(2): 167-177. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201402008

    Zhao X F, Xu H L, Zhang P, et al. Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 167-177. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201402008
    [37]
    王均伟, 侯嫚嫚, 黄利亚, 等.长白山阔叶红松林系统发育和功能性状beta多样性[J].北京林业大学学报, 2016, 38(10): 21-27. doi: 10.13332/j.1000-1522.20160062

    Wang J W, Hou M M, Huang L Y, et al. Phylogenetic and functional beta diversity in a broadleaved Korean pine mixed forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(10): 21-27. doi: 10.13332/j.1000-1522.20160062
    [38]
    任昱, 卢琦, 吴波, 等.不同模拟增雨下白刺比叶面积和叶干物质含量的比较[J].生态学报, 2015, 35(14): 4707-4715. http://d.old.wanfangdata.com.cn/Periodical/stxb201514016

    Ren Y, Lu Q, Wu B, et al. Specific leaf area and leaf dry matter content of Nitraria tangutorum in the artificially simulated precipitation[J]. Acta Ecologica Sinica, 2015, 35(14): 4707-4715. http://d.old.wanfangdata.com.cn/Periodical/stxb201514016
    [39]
    张林, 罗天祥, 邓坤枚, 等.云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律[J].北京林业大学学报, 2008, 30(1): 40-44. doi: 10.3321/j.issn:1000-1522.2008.01.007

    Zhang L, Luo T X, Deng K M, et al. Vertical variations in specific leaf area and leaf dry matter content with canopy height in Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2008, 30(1): 40-44. doi: 10.3321/j.issn:1000-1522.2008.01.007
    [40]
    张桐, 洪秀玲, 孙立炜, 等. 6种植物叶片的滞尘能力与其叶面结构的关系[J].北京林业大学学报, 2017, 39(6): 70-77. doi: 10.13332/j.1000-1522.20170012

    Zhang T, Hong X L, Sun L W, et al. Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis[J]. Journal of Beijing Forestry University, 2017, 39(6): 70-77. doi: 10.13332/j.1000-1522.20170012
    [41]
    徐振锋, 胡庭兴, 张力, 等.模拟增温对川西亚高山林线交错带绵穗柳生长、叶物候和叶性状的影响[J].应用生态学报, 2009, 20(1): 7-12. http://d.old.wanfangdata.com.cn/Periodical/yystxb200901002

    Xu Z F, Hu T X, Zhang L, et al. Effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in subalpine timberline ecotone of western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2009, 20(1): 7-12. http://d.old.wanfangdata.com.cn/Periodical/yystxb200901002
    [42]
    赵文霞, 邹斌, 郑景明, 等.常绿阔叶林常见树种根茎叶功能性状的相关性[J].北京林业大学学报, 2016, 38(6): 35-41. doi: 10.13332/j.1000-1522.20160087

    Zhao W X, Zou B, Zheng J M, et al. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. doi: 10.13332/j.1000-1522.20160087
    [43]
    杨士梭, 温仲明, 苗连朋, 等.黄土丘陵区植物功能性状对微地形变化的响应[J].应用生态学报, 2014, 25(12): 3413-3419. http://d.old.wanfangdata.com.cn/Periodical/yystxb201412005

    Yang S S, Wen Z M, Miao L P, et al. Responses of plant functional traits to micro-topographical changes in hilly and gully region of the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3413-3419. http://d.old.wanfangdata.com.cn/Periodical/yystxb201412005
    [44]
    Marteinsdóttir B, Eriksson O. Plant community assembly in seminatural grasslands and eaarable fields: a trait-based approach[J]. Journal of Vegetation Science, 2013, 25(1): 77-87. http://cn.bing.com/academic/profile?id=8fe18906bc882def9011dfce9c0fe6b5&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]Feng Haoyu, Chen Sifan, Suo Aoli, Gong Junwei, Chen Feng, Liu Xiaodong. Species diversity and leaf functional traits of shrub layer in Pinus tabuliformis forest under different fire intensities in Taiyue Mountain, Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2024, 46(6): 38-47. DOI: 10.12171/j.1000-1522.20230324
    [2]Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522
    [3]Gao Yonglong, Sun Yanli, Xu Mingze, Liu Shan. Variation characteristics in leaf functional traits of woody plants in deciduous broadleaved forest community in Baihua Mountain of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(4): 40-51. DOI: 10.12171/j.1000-1522.20220462
    [4]Xing Xiaoyi, Zhang Mengyuan, Li Xiaolu, Fan Shuxin, Dong Li. Spatial heterogeneity in leaf coloring date and the phenological response to thermal environment variations of Beijing landscape trees[J]. Journal of Beijing Forestry University, 2024, 46(1): 119-130. DOI: 10.12171/j.1000-1522.20210546
    [5]Huang Qingyang, Xie Lihong, Cao Hongjie, Yang Fan, Ni Hongwei. Variation characteristics of leaf functional traits of Populus davidiana in Wudalianchi Volcano, northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 81-89. DOI: 10.12171/j.1000-1522.20200089
    [6]Li Jinhang, Zhu Jiyou, Catherine Mhae B. Jandug, Zhao Kai, Xu Chengyang. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University, 2020, 42(2): 68-78. DOI: 10.12171/j.1000-1522.20190079
    [7]Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128
    [8]ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087
    [9]LIU Xi-zhen, FENG Huan-ying, CAI Cun-ju, FAN Shao-hui, LIU Guang-lu. Response of leaf functional traits of Moso bamboo during the invading process into the broad-leaved forest[J]. Journal of Beijing Forestry University, 2015, 37(8): 8-10. DOI: 10.13332/j.1000-1522.20150157
    [10]LI Ying, YAO Jing, YANG Song, HOU Ji-hua.. Leaf functional traits of main tree species at different environmental gradients in Dongling Mountain, Beijing.[J]. Journal of Beijing Forestry University, 2014, 36(1): 72-77.
  • Cited by

    Periodical cited type(24)

    1. 潘颜霞,许浩,张亚峰,张红霞. 旱生植物水力结构特征研究进展. 草业学报. 2024(08): 190-198 .
    2. 黄小苇,连红平,王舟帆,郑庆华,游永彬,丁凌飞,林宇行,陈莹. 厦门10种主要园林灌木叶功能性状及叶经济谱分析. 福建农业科技. 2024(12): 37-47 .
    3. 庞世龙,欧芷阳,叶斯进,吴梓源,申文辉,何峰,陆国导. 桂西南岩溶区八种适生植物光合性状的变异与关联. 广西植物. 2023(03): 536-546 .
    4. 张悦,田青,黄蓉. 兰州市典型夏花树种功能性状对城市异质生境的响应. 北京林业大学学报. 2023(10): 90-99 . 本站查看
    5. 甘玉婷,倪榕蔚,黄柳菁. 城市半自然植被研究进展. 南方园艺. 2022(02): 83-86 .
    6. 朱旭,李海梅,李彦华,孙迎坤,田园. 8种灌木对大气颗粒物污染的生理响应. 生态环境学报. 2022(03): 535-545 .
    7. 顾泽,王博,陈思帆,王忆文,索奥丽,刘晓东,陈锋. 不同火烈度火烧迹地内油松叶功能性状的变化. 应用生态学报. 2022(06): 1497-1504 .
    8. 岳阳,韦柳端,徐程扬,张海燕. 不同叶片质地行道树枝叶功能性状对冠下硬化地表覆盖的响应. 北京林业大学学报. 2022(06): 34-43 . 本站查看
    9. 张姗姗,张兴,曲彦婷,胡冰,陈珊,李英姿. 留园植物叶性状及其叶经济谱研究. 北方园艺. 2022(14): 57-65 .
    10. 肖以华,付志高,许涵,史欣,唐海明,陈步峰. 城市化对珠江三角洲不同功能群植物叶片功能性状的影响. 生态环境学报. 2022(09): 1783-1793 .
    11. 吴新辉,郭钰滢,夏楠,唐杨,郭泓伯,王洋,杜恩在. 中国东部城市森林阔叶树种叶绿素含量空间特征及其影响因素. 北京师范大学学报(自然科学版). 2022(06): 910-916 .
    12. 黄贝佳,朱静,何晨阳,李伟煌,陈志为,樊月,洪滔. 潮汐对秋茄叶表型塑造及叶经济谱的影响. 林业科学. 2021(04): 63-72 .
    13. 王梦洁,容丽,李婷婷,王琪,叶天木. 黔中喀斯特9种木质藤本叶功能性状研究. 热带亚热带植物学报. 2021(05): 455-464 .
    14. 李金航,朱济友,Catherine Mhae B.Jandug,赵凯,徐程扬. 干旱胁迫环境中黄栌幼苗叶功能性状变异与产地地理-气候因子的关系. 北京林业大学学报. 2020(02): 68-78 . 本站查看
    15. 周宏轩,陶贵鑫,炎欣烨,孙婧,吴岳. 绿量的城市热环境效应研究现状与展望. 应用生态学报. 2020(08): 2804-2816 .
    16. 曹鹤,杨新兵,刘煜光,陈一凡,李予红,付永社. 河北省六种藤蔓植物石灰岩矿山环境栽种适应性. 北方园艺. 2020(17): 74-79 .
    17. 朱济友,于强,YANG Di,徐程扬,岳阳,陈向. 基于eCognition软件的显微图像叶脉网络提取与优化. 农业机械学报. 2019(01): 51-57 .
    18. 朱济友,于强,徐程扬,姚姜铭,王戈,崔哲浩. 植物功能性状及其叶经济谱对硬化地表的响应. 农业机械学报. 2019(03): 204-211 .
    19. 王晓帆,冯嘉仪,翁殊斐,秦昊林. 热带园林4种木质藤本植物叶性状与环境适应能力研究. 西南林业大学学报(自然科学). 2019(03): 166-171 .
    20. 庞志强,姜丽莎,缪祥蓉,亓峥,卢炜丽. 昆明市主要园林植物叶性状及叶经济谱研究. 西南林业大学学报(自然科学). 2019(04): 53-60 .
    21. 赵园园,陈洪醒,陈红,王海洋. 重庆市6种常见园林植物功能性状对城乡生境梯度的响应. 生态学杂志. 2019(08): 2346-2353 .
    22. 靳莎,闫淑君,黄柳菁,陈莹,马雯雯,王云霄,王喆. 植物叶功能性状间的权衡研究进展. 四川林业科技. 2019(05): 96-103 .
    23. 赵园园,王海洋. 重庆市园林树木生长特征及其对生境响应. 西南大学学报(自然科学版). 2019(11): 7-18 .
    24. 朱济友,于强,DI Yang,何韦均,徐程扬,孔祥琦. 叶生态特征及其相关性对下垫面热效应的生态权衡. 农业机械学报. 2018(11): 201-209 .

    Other cited types(27)

Catalog

    Article views (3909) PDF downloads (122) Cited by(51)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return