Citation: | Zhu Jiyou, Yu Qiang, Liu Yapei, Qin Guoming, Li Jinhang, Xu Chengyang, He Weijun. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72-81. DOI: 10.13332/j.1000-1522.20180132 |
[1] |
Pitman S D, Daniels C B, Ely M E. Green infrastructure as life support: urban nature and climate change[J]. Transactions of the Royal Society of South Australia, 2015, 139(1): 97-112. doi: 10.1080/03721426.2015.1035219
|
[2] |
Priyadarsini R, Hien W N, David C K W. Microclimatic modeling of the urban thermal environment of Singapore to mitigate urban heat island[J]. Solar Energy, 2008, 82(8):727-745. doi: 10.1016/j.solener.2008.02.008
|
[3] |
Nowak D J, Hoehn R E, Bodine A R, et al. Urban forest structure, ecosystem services and change in Syracuse, NY[J]. Urban Ecosystems, 2016, 19(4): 1455-1477. doi: 10.1007/s11252-013-0326-z
|
[4] |
Duan J L, Song X, Zhang X L. Spatiotemporal variation of urban heat island in Zhengzhou City based on RS DUAN[J]. Chinese Journal of Applied Ecology, 2011(1): 165-170. http://d.old.wanfangdata.com.cn/Periodical/yystxb201101025
|
[5] |
侯鹏, 蒋卫国, 曹广真.城市湿地热环境调节功能的定量研究[J].北京林业大学学报, 2010, 32(3): 191-196. http://j.bjfu.edu.cn/article/id/9401
Hou P, Jiang W G, Cao G Z. Quantitative analyses of thermal regulation function of urban wetland[J]. Journal of Beijing Forestry University, 2010, 32(3): 191-196. http://j.bjfu.edu.cn/article/id/9401
|
[6] |
Lun I, Mochida A, Ooka R. Progress in numerical modelling for urban thermal environment studies[J]. Advances in Building Energy Research, 2009, 3(1):147-188. doi: 10.3763/aber.2009.0306
|
[7] |
Fernández F J, Alvarez-Vázquez L J, García-Chan N, et al. Optimal location of green zones in metropolitan areas to control the urban heat island[J]. Journal of Computational & Applied Mathematics, 2015, 289(C): 412-425. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=535aeb0174944032dec2f1cd450cc68b
|
[8] |
冯悦怡, 胡潭高, 张力小.城市公园景观空间结构对其热环境效应的影响[J].生态学报, 2014, 34(12) : 3179-3187. http://d.old.wanfangdata.com.cn/Periodical/stxb201412006
Feng Y Y, Hu T G, Zhang L X. Impacts of structure characteristics on the thermal environment effect of city parks[J]. Acta Ecologica Sinica, 2014, 34(12):3179-3187. http://d.old.wanfangdata.com.cn/Periodical/stxb201412006
|
[9] |
武鹏飞, 王茂军, 张学霞.北京市植被绿度与城市热岛关系研究[J].北京林业大学学报, 2009, 31(5): 54-60. doi: 10.3321/j.issn:1000-1522.2009.05.010
Wu P F, Wang M J, Zhang X X. Relationship between vegetation greenness and urban heat island effect in Beijing[J]. Journal of Beijing Forestry University, 2009, 31(5): 54-60. doi: 10.3321/j.issn:1000-1522.2009.05.010
|
[10] |
Priyadarsini R, Hien W N, David C K W. Microclimatic modelingof the urban thermal environment of Singapore to mitigate urban heat island[J]. Solar Energy, 2008, 82(8): 727-745. doi: 10.1016/j.solener.2008.02.008
|
[11] |
王亚婷, 范连连.城市热岛对植物生长的影响以及叶片形态构成的适应性[J].生态学报, 2011, 30(20): 5992-5998. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201120015
Wang Y T, Fan L L. Effect of urban heat island on plant growth and adaptability of leaf morphology constitute[J]. Acta Ecologica Sinica, 2011, 30(20): 5992-5998. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_stxb201120015
|
[12] |
Shipley B, Lechowicz M J, Wright I, et al. Fundamental trade-offs generating the worldwide leaf economics spectrum[J]. Ecology, 2006, 87(3): 535-541. doi: 10.1890/05-1051
|
[13] |
Royer D L, Miller I M, Peppe D J, et al. Leaf economic traits from fossils support a weedy habit for early angiosperms[J]. American Journal of Botany, 2010, 97(3): 438-445. doi: 10.3732/ajb.0900290
|
[14] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821. doi: 10.1038/nature02403
|
[15] |
陈莹婷, 许振柱.植物叶经济谱的研究进展[J].植物生态学报, 2014, 38(10): 1135-1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012
Chen Y T, Xu Z Z. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135-1153. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410012
|
[16] |
张耘, 于强, 李梦莹, 等.基于EnKF-3DVar模型的海淀区地表温度模拟[J].农业机械学报, 2017, 48(9): 166-172. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201709021
Zhang Y, Yu Q, Li M Y, et al. Simulation of land surface temperature in Haidian District based on EnKF-3DVar model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 166-172. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201709021
|
[17] |
江樟焰, 陈云浩, 李京.基于Landsat TM数据的北京城市热岛研究[J].武汉大学学报(信息科学版), 2006, 31(2):120-123. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200602007
Jiang Z Y, Chen Y H, Li J. Heat island effect of Beijng based on Landsat TM data[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 120-123. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200602007
|
[18] |
朱济友, 徐程扬, 吴鞠.基于eCognition植物叶片气孔密度及气孔面积快速测算方法[J].北京林业大学学报, 2018, 40(5): 37-45. doi: 10.13332/j.1000-1522.20170412
Zhu J Y, Xu C Y, Wu J. Fast estimation of stomatal density and stomatal area of plant leaves based on eCognition[J]. Journal of Beijing Forestry University, 2018, 40(5): 37-45. doi: 10.13332/j.1000-1522.20170412
|
[19] |
张立荣, 牛海山, 汪诗平, 等.增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响[J].生态学报, 2010, 30(24): 6961-6969. http://d.old.wanfangdata.com.cn/Periodical/stxb201024033
Zhang L R, Niu H S, Wang S P, et al. Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species, Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2010, 30(24): 6961-6969. http://d.old.wanfangdata.com.cn/Periodical/stxb201024033
|
[20] |
陈媛媛, 江波, 王效科, 等.元宝枫幼苗生长和光合特性对硬化地表的响应[J].生态学杂志, 2016, 35(12): 3258-3265. http://d.old.wanfangdata.com.cn/Periodical/stxzz201612015
Chen Y Y, Jiang B, Wang X K, et al. Responses of growth and photosynthetic characteristics of Acer truncatum seedlings to hardening pavements[J]. Chinese Journal of Ecology, 2016, 35(12): 3258-3265. http://d.old.wanfangdata.com.cn/Periodical/stxzz201612015
|
[21] |
叶子奇, 邓如军, 王雨辰, 等.胡杨繁殖根系分枝特征及其与土壤因子的关联性[J].北京林业大学学报, 2018, 40(2): 31-39. doi: 10.13332/j.1000-1522.20170426
Ye Z Q, Deng R J, Wang Y C, et al. Branching patterns of clonal root of Populus euphratica and its associations with soil factors[J]. Journal of Beijing Forestry University, 2018, 40(2): 31-39. doi: 10.13332/j.1000-1522.20170426
|
[22] |
陈媛媛, 江波, 王效科, 等.北京典型绿化树种幼苗光合特性对硬化地表的响应[J].生态学报, 2017, 37(11): 3673-3682. http://d.old.wanfangdata.com.cn/Periodical/stxb201711009
Chen Y Y, Jiang B, Wang X K, et al. Effect of pavement on the leaf photosynthetic characteristics of saplings of three common tree species (Pinus tabulaeformis, Fraxinus chinensis, and Acer truncatum) in Beijing[J]. Acta Ecologica Sinica, 2017, 37(11): 3673-3682. http://d.old.wanfangdata.com.cn/Periodical/stxb201711009
|
[23] |
杨锐, 张博睿, 王玲玲, 等.元谋干热河谷植物功能性状组合的海拔梯度响应[J].生态环境学报, 2015, 24(1): 49-56. http://d.old.wanfangdata.com.cn/Periodical/tryhj2015010009
Yang R, Zhang B R, Wang L L, et al. The response of plant functional traits' group to gradients of altitude in dry-hot valley of Yuan-Mou[J]. Ecology and Environmental Sciences, 2015, 24(1): 49-56. http://d.old.wanfangdata.com.cn/Periodical/tryhj2015010009
|
[24] |
韩威, 刘超, 樊艳文, 等.长白山阔叶木本植物叶片形态性状沿海拔梯度的响应特征[J].北京林业大学学报, 2014, 36(4): 47-53. doi: 10.13332/j.cnki.jbfu.2014.04.012
Han W, Liu C, Fan Y W, et al. Responses of leaf morphological traits for broadleaved woody plants along the altitudinal gradient of Changbai Mountain, northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(4): 47-53. doi: 10.13332/j.cnki.jbfu.2014.04.012
|
[25] |
Garnier E, Cortez J, Billès G, et al. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 2004, 85(9): 2630-2637. doi: 10.1890/03-0799
|
[26] |
Lavorel S, Grigulis K, Lamarque P, et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services[J]. Journal of Ecology, 2011, 99(1): 135-147. doi: 10.1111/jec.2010.99.issue-1
|
[27] |
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum[J]. Ecology Letters, 2010, 12(4): 351-366. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216596116/
|
[28] |
Murru V, Marignani M, Acosta A T R, et al. Bryophytes in Mediterranean coastal dunes: ecological strategies and distribution along the vegetation zonation[J]. Plant Biosystems, 2018(1): 1-8. http://cn.bing.com/academic/profile?id=b917109773ae5a77e7b0710f54f52e5d&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
Huang H, Ooka R, Kato S. Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer[J]. Atmospheric Environment, 2005, 39(34): 6362-6375. doi: 10.1016/j.atmosenv.2005.07.018
|
[30] |
黄群芳, 陆玉麒.短期大规模人口流动对上海市城市热岛的影响[J].气候与环境研究, 2017, 22(6): 708-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj201706006
Huang Q F, Lu Y Q. Effects of short-term massive human migration during the Chinese new year on the urban heat island effect in Shanghai[J]. Climatic and Environmental Research, 2017, 22(6): 708-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj201706006
|
[31] |
Freschet G T, Cornelissen J H C, Logtestijn R S P, et al. Evidence of the 'plant economics spectrum' in a subarctic flora[J]. Journal of Ecology, 2010, 98(2): 362-373. doi: 10.1111/jec.2010.98.issue-2
|
[32] |
Mason C M, Donovan L A. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny[J]. Oecologia, 2015, 177(4): 1053-1066. doi: 10.1007/s00442-014-3177-2
|
[33] |
Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal Botany, 2003, 51(4): 335-380. doi: 10.1071/BT02124
|
[34] |
Wang H, Chen H. Plant functional groups based on vegetative and reproductive traits in a subtropical forest community[J]. Journal of Forest Research, 2013, 18(6): 482-490. doi: 10.1007/s10310-012-0376-8
|
[35] |
Swenson N G. The functional ecology and diversity of tropical tree assemblages through space and time: from local to regional and from traits to transcriptomes[J]. Isrn Forestry, 2013, 2012(2): 133-140. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_42c46ee37d9ba9663a3dcdbf9129987b
|
[36] |
赵新风, 徐海量, 张鹏, 等.养分与水分添加对荒漠草地植物群落结构和物种多样性的影响[J].植物生态学报, 2014, 38(2): 167-177. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201402008
Zhao X F, Xu H L, Zhang P, et al. Effects of nutrient and water additions on plant community structure and species diversity in desert grasslands[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 167-177. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201402008
|
[37] |
王均伟, 侯嫚嫚, 黄利亚, 等.长白山阔叶红松林系统发育和功能性状beta多样性[J].北京林业大学学报, 2016, 38(10): 21-27. doi: 10.13332/j.1000-1522.20160062
Wang J W, Hou M M, Huang L Y, et al. Phylogenetic and functional beta diversity in a broadleaved Korean pine mixed forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(10): 21-27. doi: 10.13332/j.1000-1522.20160062
|
[38] |
任昱, 卢琦, 吴波, 等.不同模拟增雨下白刺比叶面积和叶干物质含量的比较[J].生态学报, 2015, 35(14): 4707-4715. http://d.old.wanfangdata.com.cn/Periodical/stxb201514016
Ren Y, Lu Q, Wu B, et al. Specific leaf area and leaf dry matter content of Nitraria tangutorum in the artificially simulated precipitation[J]. Acta Ecologica Sinica, 2015, 35(14): 4707-4715. http://d.old.wanfangdata.com.cn/Periodical/stxb201514016
|
[39] |
张林, 罗天祥, 邓坤枚, 等.云南松比叶面积和叶干物质含量随冠层高度的垂直变化规律[J].北京林业大学学报, 2008, 30(1): 40-44. doi: 10.3321/j.issn:1000-1522.2008.01.007
Zhang L, Luo T X, Deng K M, et al. Vertical variations in specific leaf area and leaf dry matter content with canopy height in Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2008, 30(1): 40-44. doi: 10.3321/j.issn:1000-1522.2008.01.007
|
[40] |
张桐, 洪秀玲, 孙立炜, 等. 6种植物叶片的滞尘能力与其叶面结构的关系[J].北京林业大学学报, 2017, 39(6): 70-77. doi: 10.13332/j.1000-1522.20170012
Zhang T, Hong X L, Sun L W, et al. Particle-retaining characteristics of six tree species and their relations with micro-configurations of leaf epidermis[J]. Journal of Beijing Forestry University, 2017, 39(6): 70-77. doi: 10.13332/j.1000-1522.20170012
|
[41] |
徐振锋, 胡庭兴, 张力, 等.模拟增温对川西亚高山林线交错带绵穗柳生长、叶物候和叶性状的影响[J].应用生态学报, 2009, 20(1): 7-12. http://d.old.wanfangdata.com.cn/Periodical/yystxb200901002
Xu Z F, Hu T X, Zhang L, et al. Effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in subalpine timberline ecotone of western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2009, 20(1): 7-12. http://d.old.wanfangdata.com.cn/Periodical/yystxb200901002
|
[42] |
赵文霞, 邹斌, 郑景明, 等.常绿阔叶林常见树种根茎叶功能性状的相关性[J].北京林业大学学报, 2016, 38(6): 35-41. doi: 10.13332/j.1000-1522.20160087
Zhao W X, Zou B, Zheng J M, et al. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. doi: 10.13332/j.1000-1522.20160087
|
[43] |
杨士梭, 温仲明, 苗连朋, 等.黄土丘陵区植物功能性状对微地形变化的响应[J].应用生态学报, 2014, 25(12): 3413-3419. http://d.old.wanfangdata.com.cn/Periodical/yystxb201412005
Yang S S, Wen Z M, Miao L P, et al. Responses of plant functional traits to micro-topographical changes in hilly and gully region of the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3413-3419. http://d.old.wanfangdata.com.cn/Periodical/yystxb201412005
|
[44] |
Marteinsdóttir B, Eriksson O. Plant community assembly in seminatural grasslands and eaarable fields: a trait-based approach[J]. Journal of Vegetation Science, 2013, 25(1): 77-87. http://cn.bing.com/academic/profile?id=8fe18906bc882def9011dfce9c0fe6b5&encoded=0&v=paper_preview&mkt=zh-cn
|
1. |
潘颜霞,许浩,张亚峰,张红霞. 旱生植物水力结构特征研究进展. 草业学报. 2024(08): 190-198 .
![]() | |
2. |
黄小苇,连红平,王舟帆,郑庆华,游永彬,丁凌飞,林宇行,陈莹. 厦门10种主要园林灌木叶功能性状及叶经济谱分析. 福建农业科技. 2024(12): 37-47 .
![]() | |
3. |
庞世龙,欧芷阳,叶斯进,吴梓源,申文辉,何峰,陆国导. 桂西南岩溶区八种适生植物光合性状的变异与关联. 广西植物. 2023(03): 536-546 .
![]() | |
4. |
张悦,田青,黄蓉. 兰州市典型夏花树种功能性状对城市异质生境的响应. 北京林业大学学报. 2023(10): 90-99 .
![]() | |
5. |
甘玉婷,倪榕蔚,黄柳菁. 城市半自然植被研究进展. 南方园艺. 2022(02): 83-86 .
![]() | |
6. |
朱旭,李海梅,李彦华,孙迎坤,田园. 8种灌木对大气颗粒物污染的生理响应. 生态环境学报. 2022(03): 535-545 .
![]() | |
7. |
顾泽,王博,陈思帆,王忆文,索奥丽,刘晓东,陈锋. 不同火烈度火烧迹地内油松叶功能性状的变化. 应用生态学报. 2022(06): 1497-1504 .
![]() | |
8. |
岳阳,韦柳端,徐程扬,张海燕. 不同叶片质地行道树枝叶功能性状对冠下硬化地表覆盖的响应. 北京林业大学学报. 2022(06): 34-43 .
![]() | |
9. |
张姗姗,张兴,曲彦婷,胡冰,陈珊,李英姿. 留园植物叶性状及其叶经济谱研究. 北方园艺. 2022(14): 57-65 .
![]() | |
10. |
肖以华,付志高,许涵,史欣,唐海明,陈步峰. 城市化对珠江三角洲不同功能群植物叶片功能性状的影响. 生态环境学报. 2022(09): 1783-1793 .
![]() | |
11. |
吴新辉,郭钰滢,夏楠,唐杨,郭泓伯,王洋,杜恩在. 中国东部城市森林阔叶树种叶绿素含量空间特征及其影响因素. 北京师范大学学报(自然科学版). 2022(06): 910-916 .
![]() | |
12. |
黄贝佳,朱静,何晨阳,李伟煌,陈志为,樊月,洪滔. 潮汐对秋茄叶表型塑造及叶经济谱的影响. 林业科学. 2021(04): 63-72 .
![]() | |
13. |
王梦洁,容丽,李婷婷,王琪,叶天木. 黔中喀斯特9种木质藤本叶功能性状研究. 热带亚热带植物学报. 2021(05): 455-464 .
![]() | |
14. |
李金航,朱济友,Catherine Mhae B.Jandug,赵凯,徐程扬. 干旱胁迫环境中黄栌幼苗叶功能性状变异与产地地理-气候因子的关系. 北京林业大学学报. 2020(02): 68-78 .
![]() | |
15. |
周宏轩,陶贵鑫,炎欣烨,孙婧,吴岳. 绿量的城市热环境效应研究现状与展望. 应用生态学报. 2020(08): 2804-2816 .
![]() | |
16. |
曹鹤,杨新兵,刘煜光,陈一凡,李予红,付永社. 河北省六种藤蔓植物石灰岩矿山环境栽种适应性. 北方园艺. 2020(17): 74-79 .
![]() | |
17. |
朱济友,于强,YANG Di,徐程扬,岳阳,陈向. 基于eCognition软件的显微图像叶脉网络提取与优化. 农业机械学报. 2019(01): 51-57 .
![]() | |
18. |
朱济友,于强,徐程扬,姚姜铭,王戈,崔哲浩. 植物功能性状及其叶经济谱对硬化地表的响应. 农业机械学报. 2019(03): 204-211 .
![]() | |
19. |
王晓帆,冯嘉仪,翁殊斐,秦昊林. 热带园林4种木质藤本植物叶性状与环境适应能力研究. 西南林业大学学报(自然科学). 2019(03): 166-171 .
![]() | |
20. |
庞志强,姜丽莎,缪祥蓉,亓峥,卢炜丽. 昆明市主要园林植物叶性状及叶经济谱研究. 西南林业大学学报(自然科学). 2019(04): 53-60 .
![]() | |
21. |
赵园园,陈洪醒,陈红,王海洋. 重庆市6种常见园林植物功能性状对城乡生境梯度的响应. 生态学杂志. 2019(08): 2346-2353 .
![]() | |
22. |
靳莎,闫淑君,黄柳菁,陈莹,马雯雯,王云霄,王喆. 植物叶功能性状间的权衡研究进展. 四川林业科技. 2019(05): 96-103 .
![]() | |
23. |
赵园园,王海洋. 重庆市园林树木生长特征及其对生境响应. 西南大学学报(自然科学版). 2019(11): 7-18 .
![]() | |
24. |
朱济友,于强,DI Yang,何韦均,徐程扬,孔祥琦. 叶生态特征及其相关性对下垫面热效应的生态权衡. 农业机械学报. 2018(11): 201-209 .
![]() |