• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Su Kai, Yu Qiang, Sun Xiaoting, Yue Depeng. Effects of leaf dust retention on spectral characteristics of Euonymus japonicus[J]. Journal of Beijing Forestry University, 2021, 43(11): 40-49. DOI: 10.12171/j.1000-1522.20200213
Citation: Su Kai, Yu Qiang, Sun Xiaoting, Yue Depeng. Effects of leaf dust retention on spectral characteristics of Euonymus japonicus[J]. Journal of Beijing Forestry University, 2021, 43(11): 40-49. DOI: 10.12171/j.1000-1522.20200213

Effects of leaf dust retention on spectral characteristics of Euonymus japonicus

More Information
  • Received Date: July 06, 2020
  • Revised Date: December 25, 2020
  • Available Online: October 10, 2021
  • Published Date: November 29, 2021
  •   Objective  Leaf dust retention will affect the spectral characteristics of vegetation, which will weaken the response ability of vegetation index to vegetation and affect the accuracy of inversion evaluation. In order to explore the influence of leaf dust retention on vegetation spectral response characteristics and prediction models, this study took the common greening tree species Euonymus japonicus in Beijing as the research object.
      Method  Leaf samples were collected from closed area, semi closed area and open area, and environmental dust was collected. Hyperspectral data from different dust-retaining leaves were measured using an ASD FildSpec Handheld spectrometer through indoor control experiments. Five characteristic bands and spectral angles were used to study the influence of leaf dust retention on the spectral characteristics of leaves, and the influence of dust retention on the accuracy and stability of the prediction model for leaf dust retention was also studied.
      Result  The characteristics of vegetation spectral curves were gradually weakened and the characteristics of dust were gradually enhanced with the increase of leaf dust retention, but the overall trend of spectral curves was basically the same. However, when the leaf dust retention was greater than 120 g/m2, the spectral curve basically showed the spectral characteristics of dust. When the leaf dust retention was less, the simulation accuracy of the prediction model was relatively high, but with the increase of dust retention, the determinant coefficients of all prediction models decreased; when the leaf dust retention was greater than 120 g/m2, the prediction ability of all prediction models for leaf dust retention will be worse. And the root mean square error (RMSE) increased with the increase of leaf dust retention per unit area, and the stability and prediction accuracy of the prediction model were gradually reduced. The spectral angle was very sensitive to the spectral changes of dust-retaining leaves in the range of 350−1 770 nm. It is not necessary to discuss the degree of dust-retaining using the spectral angle of leaves in different regions, while simple comparison with the threshold was need to be done.
      Conclusion  In this study, the response characteristics of leaf dust retention to vegetation spectrum were studied through indoor control experiments, which could provide basic theory and data support for establishing physical model of spectral reflection of dust retention vegetation.
  • [1]
    史贵涛, 陈振楼, 许世远, 等. 上海城市公园土壤及灰尘中重金属污染特征[J]. 环境科学, 2007, 28(2):238−242. doi: 10.3321/j.issn:1001-0742.2007.02.019

    Shi G T, Chen Z L, Xu S Y, et al. Characteristics of heavy metal pollution in soil and dust of urban parks in Shanghai[J]. Environmental Science, 2007, 28(2): 238−242. doi: 10.3321/j.issn:1001-0742.2007.02.019
    [2]
    Das R, Das S N, Misra V N. Chemical composition of rainwater and dustfall at Bhubaneswar in the east coast of India[J]. Atmospheric Environment, 2005, 39(32): 5908−5916. doi: 10.1016/j.atmosenv.2005.06.030
    [3]
    Wang L, Hu S, Ma M, et al. Magnetic characteristics of atmospheric dustfall in a subtropical monsoon climate zone of China and its environmental implications: a case study of Nanjing[J]. Atmospheric Environment, 2019, 212: 231−238. doi: 10.1016/j.atmosenv.2019.05.039
    [4]
    李新荣, 张景光, 王新平, 等. 干旱沙漠区土壤微生物结皮及其对固沙植被影响的研究[J]. 植物学报, 2000, 42(9):965−970.

    Li X R, Zhang J G, Wang X P, et al. Study on soil microbioyic crust and its influences on sand-fixing vegetation in arid desert region[J]. Journal of Integrative Plant Biology, 2000, 42(9): 965−970.
    [5]
    王晓磊, 王成. 城市森林调控空气颗粒物功能研究进展[J]. 生态学报, 2014, 34(8):1910−1921.

    Wang X L, Wang C. Research status and prospects on functions of urban forests in regulating the air particulate matter[J]. Acta Ecologica Sinica, 2014, 34(8): 1910−1921.
    [6]
    周健, 吴宇, 张林菁, 等. 保定市区常见灌木滞尘能力研究[J]. 林业与生态科学, 2019, 34(1):114−120.

    Zhou J, Wu Y, Zhang L J, et al. The study of dust-retention ability of some common shrubs in Baoding[J]. Forestry and Ecological Sciences, 2019, 34(1): 114−120.
    [7]
    韩轶, 李吉跃, 郭连生, 等. 居住小区生态型绿地模式的研究[J]. 北京林业大学学报, 2002, 24(4):102−106. doi: 10.3321/j.issn:1000-1522.2002.04.023

    Han Y, Li J Y, Guo L S, et al. Patterns of green area in residential districts[J]. Journal of Beijing Forestry University, 2002, 24(4): 102−106. doi: 10.3321/j.issn:1000-1522.2002.04.023
    [8]
    Zheng J G. Study on the dust-retention capacity resulting from greenbelt of the main roads in Xuchang[J]. Advanced Materials Research, 2013, 726−731: 1805−1808. doi: 10.4028/www.scientific.net/AMR.726-731.1805
    [9]
    彭杰, 向红英, 王家强, 等. 叶面降尘的高光谱定量遥感模型[J]. 红外与毫米波学报, 2015, 35(5):1365−1369.

    Peng J, Xiang H Y, Wang J Q, et al. Quantitative model of foliar dustfall contentusing hyperspectral remote sensing[J]. Spectroscopy and Spectral Analysis, 2015, 35(5): 1365−1369.
    [10]
    Freer-Smith P H, Holloway S, Goodman A. The uptake of particulates by an urban woodland: site description and particulate composition[J]. Environmental Pollution, 1997, 95(1): 27−35. doi: 10.1016/S0269-7491(96)00119-4
    [11]
    郑西平, 张启翔. 北京城市园林绿化植物应用现状与展望[J]. 中国园林, 2011, 27(5):81−85. doi: 10.3969/j.issn.1000-6664.2011.05.024

    Zheng X P, Zhang Q X. Status and prospects of urban landscape plants’ application in Beijing[J]. Chinese Landscape Architecture, 2011, 27(5): 81−85. doi: 10.3969/j.issn.1000-6664.2011.05.024
    [12]
    Lei C, Li Q M. Ectomycorrhizal communities associated with Tilia amurensis trees in natural versus urban forests of Heilongjiang in northeast China[J]. Journal of Forestry Research, 2016(2): 401−406.
    [13]
    Lee J, Lee D. Nature experience, recreation activity and health benefits of visitors in mountain and urban forests in Vienna, Zurich and Freiburg[J]. Journal of Mountain Science, 2015(6): 1551−1561.
    [14]
    Shen Z X, Cao J J, Li X X, et al. Chemical characteristics of aerosol particles (PM2.5) at a site of Horqin Sand-Land in northeast China[J]. Journal of Environmental Sciences, 2006, 18(4): 701−707.
    [15]
    赵娟娟, 欧阳志云, 郑华, 等. 城市植物分层随机抽样调查方案设计的方法探讨[J]. 生态学杂志, 2009,28(7):1430−1436.

    Zhao J J, Ouyang Z Y, Zheng H, et al. Proposed procedure in designing and planning stratified random selection investigation of urban vegetation[J]. Chinese Journal of Ecology, 2009,28(7): 1430−1436.
    [16]
    熊佑清, 李崇涛, 刘晓辉. 大叶黄杨的抗寒性及其应用研究[J]. 中国园林, 2004, 20(4):36−38. doi: 10.3969/j.issn.1000-6664.2004.04.013

    Xiong Y Q, Li C T, Liu X H. A study of the cold resistance of Euonymus japonicus and its application[J]. Chinese Landscape Architecture, 2004, 20(4): 36−38. doi: 10.3969/j.issn.1000-6664.2004.04.013
    [17]
    苏凯, 于强, 胡雅慧, 等. 基于光谱特征的北京市冬季城市森林滞尘分布反演研究[J]. 光谱学与光谱分析, 2020, 40(6):1696−1702.

    Su K, Yu Q, Hu Y H, et al. Inversion research on dust distribution of urban forests in Beijing in winter based on spectral characteristics[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1696−1702.
    [18]
    郑有飞, Olfert O, Brandt S, 等. 高光谱遥感在农作物长势监测中的应用[J]. 气象与环境科学, 2007, 30(1):10−16. doi: 10.3969/j.issn.1673-7148.2007.01.003

    Zheng Y F, Olfert O, Brandt S, et al. Monitoring growth vigour of crop using hyperspectral remote sensing data[J]. Meteorological and Environmental Sciences, 2007, 30(1): 10−16. doi: 10.3969/j.issn.1673-7148.2007.01.003
    [19]
    谭倩, 赵永超, 童庆禧, 等. 植被光谱维特征提取模型[J]. 遥感信息, 2001(1):14−18. doi: 10.3969/j.issn.1000-3177.2001.01.003

    Tan Q, Zhao Y C, Tong Q X, et al. Vegetation spectral dimension feature extraction model[J]. Remote Sensing Information, 2001(1): 14−18. doi: 10.3969/j.issn.1000-3177.2001.01.003
    [20]
    Dennison P E, Halligan K Q, Roberts D A. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper[J]. Remote Sensing of Environment, 2004, 93(3): 359−367. doi: 10.1016/j.rse.2004.07.013
    [21]
    李燕, 杨可明, 荣坤鹏, 等. 重金属铜胁迫下玉米的光谱特征及监测研究[J]. 光谱学与光谱分析, 2019, 39(9):2823−2828.

    Li Y, Yang K M, Rong K P, et al. Spectral characteristics and identification research of corn under copper stress[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2823−2828.
    [22]
    黄爽. 烃类微渗漏胁迫植被光谱模型研究[D]. 长春: 吉林大学, 2015.

    Huang S. Study on spectral model of plants stressed by hydrocarbon microseepage[D]. Changchun: Jilin University, 2015.
    [23]
    Jiao C X, Zheng G H, Shang G, et al. Coastal soil clay content estimation using reflectance spectroscopy[J]. Editorial Office of Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(5): 137−141.
    [24]
    朱济友, 于强, 刘晓希, 等. 叶片滞尘对大叶黄杨光谱特征的影响及其滞尘量预测研究[J]. 光谱学与光谱分析, 2020, 40(2):191−196.

    Zhu J Y, Yu Q, Liu X X, et al. Effect of leaf dust retention on spectral characteristics of Euonymus japonicus and its dust retention prediction[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 191−196.
    [25]
    Filippa G, Cremonese E, Migliavacca M, et al. NDVI derived from near-infrared-enabled digital cameras: applicability across different plant functional types[J]. Agricultural and Forest Meterorology, 2018, 249: 275−285. doi: 10.1016/j.agrformet.2017.11.003
    [26]
    Zaitunah A, Samsuri S, Ahmad A G, et al. Normalized difference vegetation index (NDVI) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia[J/OL]. Iop Conference Series: Earth and Environmental Science, 2018, 126: 012112 [2020−10−15]. https://iopscience.iop.org/article/10.1088/1755-1315/126/1/012112/meta.
    [27]
    Malthus T J, Dekker A G. First derivative indices for the remote sensing of inland water quality using high spectral resolution reflectance[J]. Environment International, 1995, 21(2): 221−232. doi: 10.1016/0160-4120(95)00012-7
    [28]
    段敏杰, 李新宇, 赵松婷, 等. 不同滞尘环境下植物叶片高光谱特征变化研究[J]. 西南林业大学学报(自然科学), 2020, 40(3):88−94.

    Duan M J, Li X Y, Zhao S T, et al. Study on changes of hyperspectral characteristics of plant leaves onder different dust retention conditions[J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(3): 88−94.
  • Related Articles

    [1]Zhou Lai, Cheng Xiaofang, Zhang Mengtao. Model construction of Larix principis-rupprechtii canopy volume and surface area based on BP neural network[J]. Journal of Beijing Forestry University, 2024, 46(8): 94-100. DOI: 10.12171/j.1000-1522.20230166
    [2]Zhang Yunlin, Luo Hua, Luo Aixia, Sun Tiantian, Ding Bo. Influencing factors and prediction models of surface fire spreading rate of typical coniferous forest in karst ecosystem of Guizhou Province, southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(5): 37-45. DOI: 10.12171/j.1000-1522.20220348
    [3]Zhang Jing, Qi Chusheng, Mu Jun. Effects of thermal treatment temperature and duration on mass loss and rupture modulus of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2020, 42(10): 137-144. DOI: 10.12171/j.1000-1522.20200257
    [4]Zhan Hang, Niu Shukui, Wang Bo. Prediction models and changing rules of dead fuel moisture content of 8 forest species in Beijing area[J]. Journal of Beijing Forestry University, 2020, 42(6): 80-90. DOI: 10.12171/j.1000-1522.20190370
    [5]ZHANG Wen-yi, JING Tian-zhong, YAN Shan-chun. Studies on prediction models of Dendrolimus superans occurrence area based on machine learning[J]. Journal of Beijing Forestry University, 2017, 39(1): 85-93. DOI: 10.13332/j.1000-1522.20160205
    [6]ZHANG Zhen-ming, YU Xin-xiao, XU Juan, GAN Jing, WANG Xiao-ping, LI Jin-hai. Spatial variability and prediction of soil available nitrogen of different vegetation types.[J]. Journal of Beijing Forestry University, 2009, 31(5): 12-18.
    [7]YU Yang-lun, YU Wen-ji, ZHANG Fang-wen.. Prediction of modules of elastic of thick plywood.[J]. Journal of Beijing Forestry University, 2009, 31(1): 130-133.
    [8]TIAN Yong-chen, LIU Shao-gang, ZHAO Gang, HU Jian, LI Wen-bin. Multi-model forecasting system of forest fire spreading based on deductive database[J]. Journal of Beijing Forestry University, 2007, 29(4): 49-53. DOI: 10.13332/j.1000-1522.2007.04.012
    [9]LI Wen-bin, ZHANG Jun-mei, SA Chao, WANG De-ming, GAO Kai. Model for forecasting the electric field intensity of UHF wireless frequency band in plantations[J]. Journal of Beijing Forestry University, 2007, 29(4): 15-18. DOI: 10.13332/j.1000-1522.2007.04.004
    [10]HUI Gang-ying, XU Hai, HU Yan-bo. Model for forecasting the distribution of the minimum tree-to-tree distances[J]. Journal of Beijing Forestry University, 2006, 28(5): 18-21.
  • Cited by

    Periodical cited type(3)

    1. 孔丽娟,隋媛媛,刘爽,陈丽梅,周丽娜,刘春慧,姜玲,李松,于海业. 最优光谱特征变量反演颗粒物污染生菜的生理信息. 光谱学与光谱分析. 2024(04): 1128-1135 .
    2. 樊丽,黄云,胡伟,张辰,刘艳. 高光谱技术在园艺学科研究的文献分析. 北方农业学报. 2023(01): 128-134 .
    3. 马保东,杨湘儒,蒋紫薇,车德福. 煤滞尘对叶片反射光谱与植被指数的影响与定量分析. 光谱学与光谱分析. 2023(06): 1947-1952 .

    Other cited types(1)

Catalog

    Article views (783) PDF downloads (64) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return