Citation: | Zhang Jing, Qi Chusheng, Mu Jun. Effects of thermal treatment temperature and duration on mass loss and rupture modulus of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2020, 42(10): 137-144. DOI: 10.12171/j.1000-1522.20200257 |
[1] |
王沈南. 热处理温度对杉木木材性质的影响机制研究[D]. 北京: 中国林业科学研究院, 2017.
Wang S N. Impact of different heat treatment temperatures on the properties of Chinese fir wood[D]. Beijing: Chinese Academy of Forestry, 2017.
|
[2] |
江京辉, 吕建雄, 周永东, 等. 水蒸气热处理对人工林杉木性质的影响[J]. 木材工业, 2015, 29(2):13−16. doi: 10.3969/j.issn.1001-8654.2015.02.003.
Jiang J H, Lü J X, Zhou Y D, et al. Influence of heat treatment by steam on wood properties of Chinese fir from plantations[J]. China Wood Industry, 2015, 29(2): 13−16. doi: 10.3969/j.issn.1001-8654.2015.02.003.
|
[3] |
丁涛, 蔡家斌, 耿君. 欧洲木材热处理产业和标准化[J]. 木材工业, 2015, 29(3):26−30.
Ding T, Cai J B, Geng J. Review on thermally modified timber industry and standardization in Europe[J]. China Wood Industry, 2015, 29(3): 26−30.
|
[4] |
Chen Y C, Yang T C, Hung K C, et al. Effects of heat treatment on the chemical compositions and thermal decomposition kinetics of Japanese cedar and beech wood[J]. Polymer Degradation and Stability, 2018, 158: 220−227. doi: 10.1016/j.polymdegradstab.2018.11.003
|
[5] |
Esteves B, Pereira H. Wood modification by heat treatment: a review[J]. BioResources, 2008, 4(1): 370−404.
|
[6] |
Zaman A, Alen R, Kotilainen R. Thermal behavior of scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200−230 ℃[J]. Wood & Fiber Science, 2000, 32(2): 138−143.
|
[7] |
Yalcin M, Sahin H I. Changes in the chemical structure and decay resistance of heat-treated narrow-leaved ash wood[J]. Maderas: Cienciay Tecnologia, 2015, 17(2): 435−446.
|
[8] |
Ozgenc O, Durmaz S, Boyaci I H, et al. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2017, 171: 395−400. doi: 10.1016/j.saa.2016.08.026.
|
[9] |
江京辉, 吕建雄. 高温热处理对木材强度影响的研究进展[J]. 南京林业大学学报(自然科学版), 2012, 36(2):1−6. doi: 10.3969/j.issn.1000-2006.2012.02.001.
Jiang J H, Lü J X. Research progress in effect of heat treatment on wood strength[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2012, 36(2): 1−6. doi: 10.3969/j.issn.1000-2006.2012.02.001.
|
[10] |
Bekhta P, Niemz P. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood[J]. Holzforschung, 2003, 57(5): 539−546. doi: 10.1515/HF.2003.080.
|
[11] |
张乃华, 李康, 李延军, 等. 高温水热处理对马尾松木材物理力学性能的影响[J]. 浙江林业科技, 2017, 37(5):35−41. doi: 10.3969/j.issn.1001-3776.2017.05.006.
Zhang N H, Li K, Li Y J, et al. Effect of high temperature hydrothermal treatment on physical and mechanical properties of Pinus massoniana wood[J]. Journal of Zhejiang for Science and Technology, 2017, 37(5): 35−41. doi: 10.3969/j.issn.1001-3776.2017.05.006.
|
[12] |
孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5):50−58.
Sun H Y, Su M L, Lü J X, et al. Research progress on effect of microfibril angel and crystalline area incell wall on wood physical and mechanical properties[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(5): 50−58.
|
[13] |
Bergander A, Salmen L. Cell wall properties and their effects on the mechanical properties of fibers[J]. Journal of Materials Science, 2002, 37(1): 151−156. doi: 10.1023/A:1013115925679.
|
[14] |
Malek S, Gibson L J. Multi-scale modelling of elastic properties of balsa[J]. International Journal of Solids and Structures, 2017, 113: 118−131.
|
[15] |
Tiryaki S, Hamzaçebi C. Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks[J]. Measurement, 2014, 49(1): 266−274.
|
[16] |
Čabalová I, Kačík F, Lagaňa R, et al. Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate oak (Quercus robur L.) wood[J]. Bioresources, 2018, 13(1): 157−170.
|
[17] |
Mburu F, Stephane D, Bocquet J F, et al. Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood[J]. Polymer Degradation & Stability, 2008, 93(2): 401−405.
|
[18] |
Zhang N, Xu M, Cai L. Improvement of mechanical, humidity resistance and thermal properties of heat-treated rubber wood by impregnation of SiO2 precursor[J]. Scientific Reports, 2019, 9(1): 982. doi: 10.1038/s41598-018-37363-3.
|
[19] |
Shen Y H, Gao Z Z, Hou X F, et al. Spectral and thermal analysis of Eucalyptus wood drying at different temperature and methods[J]. Drying Technology, 2020, 38(3): 313−320. doi: 10.1080/07373937.2019.1566742
|
[20] |
Liang T, Wang L. Thermal treatment of poplar hemicelluloses at 180 to 220 ℃ under nitrogen atmosphere[J]. Bioresources, 2016, 12(1): 1128−1135.
|
[21] |
Okon K E, Lin F, Chen Y, et al. Effect of silicone oil heat treatment on the chemical composition, cellulose crystalline structure and contact angle of Chinese parasol wood[J]. Carbohydrate Polymers, 2017, 164: 179−185. doi: 10.1016/j.carbpol.2017.01.076.
|
[22] |
Popescu C M, Jones D, Krzisnik D, et al. Determination of the effectiveness of a combined thermal/chemical wood modification by the use of FT-IR spectroscopy and chemometric methods [J/OL]. Journal of Molecular Structure, 2020, 1200: 127133 [2020−09−22]. https://doi.org/10.1016/j.molstruc.2019.127133.
|
[23] |
Kubovský I, Kačíková D, Kačík F. Structural changes of oak wood main components caused by thermal modification[J/OL]. Polymers, 2020, 12(2): 485 [2020−09−29]. https://doi:10.3390/polym12020485." target="_blank">10.3390/polym12020485">https://doi:10.3390/polym12020485.
|
[24] |
Herrera-Diaz R, Sepulveda-Villarroel V, Torres-Mella J, et al. Influence of the wood quality and treatment temperature on the physical and mechanical properties of thermally modified radiata pine[J]. European Journal of Wood and Wood Products, 2019, 77(4): 661−671. doi: 10.1007/s00107-019-01424-9.
|
[25] |
Korec R C, Lavri B, Rep G, et al. Thermogravimetry as a possible tool for determining modification degree of thermally treated Norway spruce wood[J]. Journal of Thermal Analysis & Calorimetry, 2009, 98(1): 189−195.
|
[26] |
Okon K E, Lin F, Lin X, et al. Modification of Chinese fir (Cunninghamia lanceolata L.) wood by silicone oil heat treatment with micro-wave pretreatment[J]. European Journal of Wood and Wood Products, 2018, 76(1): 221−228. doi: 10.1007/s00107-017-1165-z.
|
[27] |
Lee S H, Ashaari Z, Lum W C, et al. Chemical, physico-mechanical properties and biological durability of rubberwood particleboards after post heat-treatment in palm oil[J]. Holzforschung, 2018, 72(2): 159−167. doi: 10.1515/hf-2017-0086.
|
[28] |
Fu Z, Zhou Y, Gao X, et al. Changes of water related properties in radiata pine wood due to heat treatment[J/OL]. Construction and Building Materials, 2019, 227: 116692 [2020−09−29]. https://doi.org/10.1016/j.conbuildmat.2019.116692.
|
[29] |
Park Y, Jang S K, Park J H, et al. Changes of major chemical components in larch wood through combined treatment of drying and heat treatment using superheated steam[J]. Journal of Wood Science, 2017, 63(6): 635−643. doi: 10.1007/s10086-017-1657-9
|
[30] |
梁铁强, 王立娟. N2中热处理对落叶松木材物理性能的影响[J]. 广东化工, 2016, 43(22):22−23. doi: 10.3969/j.issn.1007-1865.2016.22.010
Liang T Q, Wang L J. The influence of thermal treatment on the physical properties of larch wood under N2 atmosphere[J]. Guangdong Chemical Industry, 2016, 43(22): 22−23. doi: 10.3969/j.issn.1007-1865.2016.22.010
|
[31] |
Popescu C, Navi P, Pena M, et al. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 191: 405−412. doi: 10.1016/j.saa.2017.10.045.
|
[32] |
Hakkou M, Petrissans M, Zoulalian A, et al. Investigation of wood wettability changes during heat treatment on the basis of chemical analysis[J]. Polymer Degradation and Stability, 2005, 89(1): 1−5. doi: 10.1016/j.polymdegradstab.2004.10.017.
|
[33] |
孔繁旭, 邹超峰, 王艳伟, 等. 热处理对木材化学组分及物理力学性能的影响[J]. 林业机械与木工设备, 2019, 47(1):9−16. doi: 10.3969/j.issn.2095-2953.2019.01.002.
Kong F X, Zou C F, Wang Y W, et al. Effect of heat treatment on chemical composition and physico-mechanical properties of wood[J]. Forestry Machinery and Wood working Equipment, 2019, 47(1): 9−16. doi: 10.3969/j.issn.2095-2953.2019.01.002.
|
[34] |
Herrera-Diaz R, Sepulveda-Villarroel V, Perez-Pena N, et al. Effect of wood drying and heat modification on some physical and mechanical properties of radiata pine[J]. Drying Technology, 2018, 36(5): 537−544. doi: 10.1080/07373937.2017.1342094.
|
[35] |
Kojima E, Yamasaki M, Imaeda K, et al. Effects of thermal modification on the mechanical properties of the wood cell wall of soft wood: behavior of S2 cellulose microfibrils under tensile loading[J]. Journal of Materials Science, 2020, 55(12): 5038−5047. doi: 10.1007/s10853-020-04346-7.
|
[36] |
吴再兴, 陈玉和, 黄成建, 等. 热处理对木材力学性能的影响综述[J]. 世界林业研究, 2019, 32(1):62−67.
Wu Z X, Chen Y H, Huang C J, et al. A review of effects of heat treatment on wood mechanical properties[J]. World Forestry Research, 2019, 32(1): 62−67.
|
[37] |
Won K R, Hong N E, Park H M, et al. Effects of heating temperature and time on the mechanical properties of heat-treated woods[J]. Journal of the Korean Wood Science and Technology, 2015, 43(2): 168−176. doi: 10.5658/WOOD.2015.43.2.168.
|
[38] |
Aydin E, Baysal E, Toker H, et al. Decay resistance, physical, mechanical, and thermal properties of heated oriental beech wood[J]. Wood Research, 2015, 60(6): 913−928.
|
[39] |
黄荣凤, 吕建雄, 曹永建, 等. 高温热处理对毛白杨木材化学成分含量的影响[J]. 北京林业大学学报, 2010, 32(3):155−160.
Huang R F, Lü J X, Cao Y J, et al. Impact of heat treatment on chemical composition of Chinese white poplar wood[J]. Journal of Beijing Forestry University, 2010, 32(3): 155−160.
|
[40] |
Sebahattin T, Aydın A. An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model[J]. Construction and Building Materials, 2014, 62: 102−108. doi: 10.1016/j.conbuildmat.2014.03.041.
|
[1] | Wen Haoyu, Zhang Jie, Li Huiyu, Gao Caiqiu, Wang Chao, Zhang Qingzhu, Jiang Jing, Liu Guifeng. Analysis of fast-growing and stability characteristics of Betula platyphylla progeny at multiple locations based on BLUP-GGE biplot[J]. Journal of Beijing Forestry University, 2024, 46(10): 53-62. DOI: 10.12171/j.1000-1522.20240010 |
[2] | Fang Fan, Jia Liming, Jiang Xiaohui, Bai Qian, Su Shuchai. Selection of superior individual Pistacia chinensis based on 24 phenotypic traits[J]. Journal of Beijing Forestry University, 2024, 46(2): 40-50. DOI: 10.12171/j.1000-1522.20220447 |
[3] | LIU Yu, XU Huan-wen, ZHANG Guang-bo, WANG You-ju, TENG Wen-hua, JIANG Jing. Multipoint growth trait test of half-sibling offspring and excellent family selection of Betula platyphylla[J]. Journal of Beijing Forestry University, 2017, 39(3): 7-15. DOI: 10.13332/j.1000-1522.20160154 |
[4] | LIU Chao-yi, LIU Gui-feng, FANG Gong-gui, JIANG Chuan-ming, JIANG Jing. Comparison of tetraploid Betula platyphylla wood fiber traits and selection of superior seed trees[J]. Journal of Beijing Forestry University, 2017, 39(2): 9-15. DOI: 10.13332/j.1000-1522.20160091 |
[5] | LIU Yu, XU Huan-wen, TENG Wen-hua, JIANG Jing, LIU Gui-feng. Full-sib progeny test and early selection in superior families of Betula platyphylla[J]. Journal of Beijing Forestry University, 2017, 39(2): 1-8. DOI: 10.13332/j.1000-1522.20160138 |
[6] | ZHANG Zi-jie, YANG Shan-xun, ZENG Yan-jiang, WANG Rong-gang, WANG Li-ming, PANG Xiao-ming, LI Yue. Variation within clones and families and superior individual selection in different cultivars of Camellia oleifera‘Ruanzhi’.[J]. Journal of Beijing Forestry University, 2016, 38(10): 59-68. DOI: 10.13332/j.1000-1522.20160104 |
[7] | JIA Qing-bin, ZHANG Han-guo, ZHANG Lei, HOU Dan. Selection of superior hybrid larch families and growth rhythm analysis[J]. Journal of Beijing Forestry University, 2016, 38(2): 52-60. DOI: 10.13332/j.1000-1522.20150343 |
[8] | XU Huan-wen, LIU Yu, LI Zhi-xin, PENG Ru-sheng, SHANG Fu-qiang, ZOU Jian-jun, LIU Gui-feng, JIANG Jing. Analysis of the stability and superiority of five-year-old birch crossbreed families based on a multi-site test.[J]. Journal of Beijing Forestry University, 2015, 37(12): 24-31. DOI: 10.13332/j.1000-1522.20140466 |
[9] | LI Yan-xia, ZHANG Han-guo, DENG Ji-feng, ZHANG Lei. Correlations among wood density, wood physical mechanics index and growth trait, and selection of elite families for production of building products in Larix olgensis[J]. Journal of Beijing Forestry University, 2012, 34(5): 6-14. |
[10] | LI Qing-jian, LI Yue, CHEN Zhi-qiang, SHI Rui-ting, ZHANG Jian-qiu, WANG Guo-zhu, ZHANG Yu-ling. Genetic variation and selection of fine families of Ulmus pumila L. in seedling stage under salinealkali stress[J]. Journal of Beijing Forestry University, 2012, 34(3): 53-57. |
1. |
党英侨,殷晶晶,陈传佳,孙丽丽,刘鹏,曹传旺. 转舞毒蛾LdCYP6AN15v1基因果蝇品系对氯虫苯甲酰胺胁迫响应. 林业科学. 2017(06): 94-104 .
![]() |