• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Ke, Liu Jinhao, Huang Qingqing, Sun Hao, Wang Dian. Optimization design and obstacle-crossing performance analysis of forest parallel articulated chassis[J]. Journal of Beijing Forestry University, 2018, 40(10): 131-140. DOI: 10.13332/j.1000-1522.20180179
Citation: Zhao Ke, Liu Jinhao, Huang Qingqing, Sun Hao, Wang Dian. Optimization design and obstacle-crossing performance analysis of forest parallel articulated chassis[J]. Journal of Beijing Forestry University, 2018, 40(10): 131-140. DOI: 10.13332/j.1000-1522.20180179

Optimization design and obstacle-crossing performance analysis of forest parallel articulated chassis

More Information
  • Received Date: May 29, 2018
  • Revised Date: July 20, 2018
  • Published Date: September 30, 2018
  • ObjectiveThe forestry power chassis generally makes open-air operation in the complex and changeable terrain, therefore it needs to have good adaptability and large and stable wheel contact force with the ground. In China, the research on special vehicle chassis in forest area is relatively weak, and the foreign forestry special vehicle chassis has certain limitations in practical application.
    MethodIn this paper, we designed a new type of forest hinged mechanism, which is able to pitch, steer and side flip based on the movement principle and advantages of the multi-DOF parallel platform, and incorporate Creo Parametric and Adams/View for modeling and kinematic optimal design to assess the obstacle-navigation performance of the articulated mechanism, make co-simulation of common and parallel hinged chassis climbing slope and crossing obstacle at different obstruction levels. Through the curve of the height of the chassis centroid and the contact force curve of the wheel and the ground, we can analyze the obstacle-crossing performance of parallel articulated chassis and comparing it with common chassis.
    ResultThe maximum steering and pitch angle of the parallel hinged mechanism increased after the optimized design. When the parallel hinged chassis crossed obstacle, its surface adhesion and maximum climbing angle and obstacle height were larger and it can ensure good obstacle-crossing ability within a certain scope of height.
    ConclusionThe parallel hinged chassis obstacle-navigation performance is better than that of ordinary rigid connection chassis, and the parallel hinged mechanism is suitable for forestry power chassis.
  • [1]
    周良, 李力, 李小飞.海底采矿车多自由度铰接机构设计与优化[J].现代制造工程, 2009(9): 120-123, 111. doi: 10.3969/j.issn.1671-3133.2009.09.033

    Zhou L, Li L, Li X F. Design and optimization of a multi-degree of freedom articulated mechanism[J]. Modern Manufacturing Engineering, 2009(9): 120-123, 111. doi: 10.3969/j.issn.1671-3133.2009.09.033
    [2]
    孙治博.六轮摆臂林用底盘稳定性分析与防倾翻研究[D].北京: 北京林业大学, 2016: 113-117. http://cdmd.cnki.com.cn/Article/CDMD-10022-1016139954.htm

    Sun Z B. Stability analysis and anti-rollover research for a six wheel-legged forestry machinery chassis[D]. Beijing: Beijing Forestry University, 2016: 113-117. http://cdmd.cnki.com.cn/Article/CDMD-10022-1016139954.htm
    [3]
    Potau X, Comellas M, Nogués M, et al. Comparison of different bogie configurations for a vehicle operating in rough terrain[J]. Journal of Terramechanics, 2011, 48(1): 75-84. doi: 10.1016/j.jterra.2010.06.002
    [4]
    李力, 赵辉, 李炳华.铰接履带式海底采矿车越障性能仿真研究[J].计算机仿真, 2008, 25(12): 195-199. doi: 10.3969/j.issn.1006-9348.2008.12.051

    Li L, Zhao H, Li B H. Simulation of motion characteristic of miner with articulated tracked vehicle on seamount[J]. Computer Simulation, 2008, 25(12): 195-199. doi: 10.3969/j.issn.1006-9348.2008.12.051
    [5]
    蒋冬政.六自由度并联机器人运动学正/反解研究[D].兰州: 兰州理工大学, 2016: 67-74. http://cdmd.cnki.com.cn/Article/CDMD-10731-1016906324.htm

    Jiang D Z. Research on the forward/inverse kinematics of parallel robot with six degrees of freedom[D]. Lanzhou: Lanzhou University of Technology, 2016: 67-74. http://cdmd.cnki.com.cn/Article/CDMD-10731-1016906324.htm
    [6]
    Li Y M, Xu Q S. Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(3): 630-640. doi: 10.1016/j.rcim.2008.05.006
    [7]
    侯绪研.六轮摇臂式月球车运动协调控制模式研究[D].哈尔滨: 哈尔滨工业大学, 2009: 134-142. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D257923

    Hou X Y. Research on coordinated motion control mode for six-wheeled rocker lunare rover[D]. Harbin: Harbin Institute of Technology, 2009: 134-142. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D257923
    [8]
    姚莉君.三自由度平动并联机构的动力学与控制系统研究[D].南京: 南京航空航天大学, 2012: 81-90. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041913.htm

    Yao L J. Research on dynamics and control system of the 3-dof translational parallel mechanism[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 81-90. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041913.htm
    [9]
    陈娟, 赵君伟, 付永领, 等.基于多软件协同仿真的六自由度平台虚拟试验系统[J].机床与液压, 2017, 45(17): 20-23. doi: 10.3969/j.issn.1001-3881.2017.17.005

    Chen J, Zhao J W, Fu Y L, et al. Virtual test system based on multi co-simulation software of six degrees of freedom platform[J]. Machine Tools & Hydraulics, 2017, 45(17): 20-23. doi: 10.3969/j.issn.1001-3881.2017.17.005
    [10]
    Wang H B, Sang L F, Hu X, et al. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism[J]. Chinese Journal of Mechanical Engineering, 2013, 26(5): 881-891. doi: 10.3901/CJME.2013.05.881
    [11]
    曹毅, 黄真, 周辉. 6/6-Stewart机构姿态奇异及姿态工作空间分析[J].设备设计与维修, 2005, 6: 90-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgys200506039

    Cao Y, Huang Z, Zhou H. Orientation-singularity and orientation-workspace analysis of the 6/6-Stewart manipulator[J]. Equipment Design and Maintenance, 2005, 6: 90-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgys200506039
    [12]
    马建明.飞行模拟器液压Stewart平台奇异位形分析及其解决方法研究[D].哈尔滨: 哈尔滨工业大学, 2010: 144-152. http://cdmd.cnki.com.cn/article/cdmd-10213-2011016010.htm

    Ma J M. Analysis of singular configuration and research of its solving method of the hydraulic stewart platform of flight simulator[D]. Harbin: Harbin Institute of Technology, 2010: 144-152. http://cdmd.cnki.com.cn/article/cdmd-10213-2011016010.htm
    [13]
    Li Y M, Xu Q S. Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(3): 630-640. doi: 10.1016/j.rcim.2008.05.006
    [14]
    Gao Q M, Gao F, Tian L. Design and development of a variable ground clearance, variable wheel track self-leveling hillside vehicle power chassis (V2-HVPC)[J]. Journal of Terramechanics, 2014, 56:78-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=091a1ac3be9dfa5b5c7161cc31d004df
    [15]
    许宏光, 谭健.基于ADAMS和Matlab/Simulink的6-UCU型Stewart并联机构联合仿真[J].机床与液压, 2016, 44(11): 32-36. doi: 10.3969/j.issn.1001-3881.2016.11.008

    Xu H G, Tan J. Co-simulation for 6-UCU Stewart parallel mechanism based on ADAMS and Matlab/Simulink[J]. Machine Tool & Hydraulics, 2016, 44(11): 32-36. doi: 10.3969/j.issn.1001-3881.2016.11.008
    [16]
    马长林, 李锋, 郝琳, 等.基于Simulink的机电液系统集成化仿真平台研究[J].系统仿真学报, 2008, 20(17): 4578-4581. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200817023

    Ma C L, Li F, Hao L, et al. Study of integrated simulation platform for mechanical electro-hydraulic system based on Simulink[J]. Journal of System Simulation, 2008, 20(17): 4578-4581. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200817023
    [17]
    徐坤, 郑羿, 丁希仑.六轮腿式机器人结构设计与运动模式分析[J].北京航空航天大学学报, 2016, 42(1): 59-71. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201601010

    Xu K, Zheng Y, Ding X L. Structure design and motion mode analysis of a six wheel-legged robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 59-71. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201601010
    [18]
    周晓光, 黄景涛. Adams与Simulink的分布式协同仿真[J].计算机工程, 2011, 37(15): 228-231. doi: 10.3969/j.issn.1000-3428.2011.15.074

    Zhou X G, Huang J T. Distributed collaborative simulation on Adams and Simulink[J]. Computer Engineering, 2011, 37(15): 228-231. doi: 10.3969/j.issn.1000-3428.2011.15.074
    [19]
    Hong P C. Analysis of articulated chassis kinematics[J]. Mechanical and Manufacturing Science, 2015, 6(12): 25-28.
    [20]
    魏占国.林木联合采育机底盘设计理论研究与应用[D].北京: 北京林业大学, 2011: 148-156. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011132771.htm

    Wei Z G. Research and application on design theory of the chassis of forestry felling & cultivation machine[D]. Beijing: Beijing Forestry University, 2011: 148-156. http://cdmd.cnki.com.cn/Article/CDMD-10022-1011132771.htm
    [21]
    李永泉, 刘天旭, 王立捷, 等. Stewart平台多能域系统动力学全解建模与实验[J].农业机械学报, 2018, 49(4): 404-411. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201804048

    Li Y Q, Liu T X, Wang L J, et al. Multi-energy domain dynamic full solution model and experiment of stewart platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 404-411. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201804048
    [22]
    魏巍, 刘昕晖, 陈延礼, 等.在复杂环境中2自由度轮式铰接车辆的越障能力[J].吉林大学学报(工学版), 2011, 41(5): 1205-1209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlgydxzrkxxb201105003

    Wei W, Liu X H, Chen Y L, et al. Obstacle surmounting capability of 2-DoF articulated vehicle in rough terrain[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(5): 1205-1209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlgydxzrkxxb201105003
    [23]
    朱阅, 阚江明.三自由度铰接林用底盘的设计与越障性能分析[J].北京林业大学学报, 2016, 38(5): 126-132. doi: 10.13332/j.1000-1522.20150304

    Zhu Y, Kan J M. The design of forestry chassis with articulated body of three degrees of freedom and analysis of its obstacle surpassing ability[J]. Journal of Beijing Forestry University, 2016, 38(5): 126-132. doi: 10.13332/j.1000-1522.20150304
    [24]
    朱阅, 阚江明, 徐道春, 等.森林工程装备底盘研究综述[J].森林工程, 2015, 31(2): 97-102. doi: 10.3969/j.issn.1001-005X.2015.02.021

    Zhu Y, Kan J M, Xu D C, et al. A review on the chassis of the forest machine[J]. Forest Engineering, 2015, 31(2): 97-102. doi: 10.3969/j.issn.1001-005X.2015.02.021
  • Cited by

    Periodical cited type(3)

    1. Shufa Sun,Jinfeng Wu,Chunlong Ren,Hualin Tang,Jianwei Chen,Wenliang Ma,Jiangwei Chu. Chassis tra fficability simulation and experiment of a LY1352JP forest tracked vehicle. Journal of Forestry Research. 2021(03): 1315-1325 .
    2. 姚宗伯,刘晋浩,张霞. 林用装备自动调平系统优化设计与仿真. 东北林业大学学报. 2020(06): 86-92+109 .
    3. 韩东涛,曹宇,佟晟. 基于微分运动学的林用轮腿底盘越障误差研究. 森林与环境学报. 2019(05): 554-560 .

    Other cited types(1)

Catalog

    Article views (2043) PDF downloads (28) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return