• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Hui, Liu Dongchao, Xu Ruirui, Hou Lina, Wang Tianqi, Liu Zhonghua, Fu Xiao, Li Shengbo. Development and identification of SSR markers based on RAD-seq of Lonicera japonica[J]. Journal of Beijing Forestry University, 2021, 43(6): 108-117. DOI: 10.12171/j.1000-1522.20200337
Citation: Li Hui, Liu Dongchao, Xu Ruirui, Hou Lina, Wang Tianqi, Liu Zhonghua, Fu Xiao, Li Shengbo. Development and identification of SSR markers based on RAD-seq of Lonicera japonica[J]. Journal of Beijing Forestry University, 2021, 43(6): 108-117. DOI: 10.12171/j.1000-1522.20200337

Development and identification of SSR markers based on RAD-seq of Lonicera japonica

More Information
  • Received Date: November 08, 2020
  • Revised Date: December 15, 2020
  • Available Online: April 21, 2021
  • Published Date: June 29, 2021
  •   Objective  Through the development of polymorphic molecular markers to make up for the lack of Lonicera japonica in SSR markers, this paper aims to promote the research in genetic resource management and variety identification, and lay the foundation for future de novo assembling of Lonicera japonica genome.
      Method  RAD-seq (restriction-site associated DNA sequencing) was used to conduct simplified genome sequencing for two Lonicera japonica samples. The SSR sequences were identified by MISA and the characterizations of SSR sequences and their polymorphisms were analyzed by bioinformatics methods.
      Result  27.805 Mbp and 42.560 Mbp clean reads were obtained in ‘Jiufengyihao’ and ‘Yate’ using restriction-site associated DNA (RAD). A total of 46 999 SSR loci were detected among the 45 850 gene sequences assembled, with the highest proportion of mono-nucleotide repeat SSRs (49.15%) and the lowest proportion of hexa-nucleotide repeat SSRs (0.20%). The repeated motifs at SSR loci were dominated by (A/T)n and showed a bias. Apart from mono-nucleotide and di-nucleotide repetition types, the repeat counts of SSR motifs mainly ranged from 5 to 6. The frequency of SSRs repetition types showed a downward trend with the increase of repeat number. The range of SSR length ranged from 10 to 310 bp, and the frequency of SSR sequence tended to decrease as the number of repetitions increasing. 38 507 pairs of SSR primers were successfully designed, with a design success rate of 81.93%. 35 pairs of SSR primers were analyzed for polymorphism, in which the average number of alleles, observed heterozygosity and PIC were 5.057, 0.363 and 0.568, among which there were 26 highly polymorphic loci and 9 moderately polymorphic loci, all of which did not deviate from the Hardy-Weinberg equilibrium.
      Conclusion  The large-scale development of SSR markers and the screening of polymorphic SSR primers can be realized based on RAD-seq technology, and provide data support for the research of Lonicera japonica in genetic diversity analysis and germplasm identification.
  • [1]
    Cai A C, Liao H Y, Wang C C, et al. A comprehensive study of the aerial parts of Lonicera japonica Thunb. based on metabolite profiling coupled with PLS-DA[J]. Phytochemical Analysis, 2020, 31(6): 786−800. doi: 10.1002/pca.2943
    [2]
    朱凤洁, 杨健, 袁媛, 等. 金银花种质资源化学指纹图谱及代谢物相似性分析[J]. 中国中药杂志, 2018, 43(12):2575−2579.

    Zhu F J, Yang J, Yuan Y, et al. Chemical fingerprinting and similarity analysis of Lonicera japonica resources[J]. China Journal of Chinese Materia Medica, 2018, 43(12): 2575−2579.
    [3]
    蔡芷辰, 刘训红, 王程成, 等. 金银花分子生物学研究进展[J]. 中国中药杂志, 2020, 45(6):1272−1278.

    Cai Z C, Liu X H, Wang C C, et al. Research progress in molecular biology of Lonicerae Japonicae Flos[J]. China Journal of Chinese Materia Medica, 2020, 45(6): 1272−1278.
    [4]
    张贵生, 王林泠, 方元平, 等. 基于SSR标记的大别山区金银花遗传多样性分析[J]. 分子植物育种, 2019, 17(19):6543−6548.

    Zhang G S, Wang L L, Fang Y P, et al. Genetic diversity analysis of Lonicera japonica in dabie mountains based on SSR markers[J]. Molecular Plant Breeding, 2019, 17(19): 6543−6548.
    [5]
    徐石勇, 李欧静, 张舒玮, 等. 金银花SSR指纹图谱的构建及遗传多样性分析[J]. 天津农业科学, 2015, 21(5):11−14,18. doi: 10.3969/j.issn.1006-6500.2015.05.003

    Xu S Y, Li O J, Zhang S W, et al. Construction of SSR-based molecular finger printing and analysis of genetic diversity for Lonicera japonica[J]. Tianjin Agricultural Sciences, 2015, 21(5): 11−14,18. doi: 10.3969/j.issn.1006-6500.2015.05.003
    [6]
    孙稚颖, 姚辉, 王振中, 等. 金银花种质资源遗传多样性的ISSR分析[J]. 世界科学技术-中医药现代化, 2013, 15(9):1890−1895.

    Sun Z Y, Yao H, Wang Z Z, et al. ISSR analysis on genetic diversity of germplasm resource of Lonicerae Japonicae Flos[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology, 2013, 15(9): 1890−1895.
    [7]
    Heckenberger M, Vort J, Peleman J, et al. Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties( II): genetic and technical sources of variation in AFLP data and comparison with SSR data[J]. Molecular Breeding, 2003, 12: 97−106. doi: 10.1023/A:1026040007166
    [8]
    王久利, 朱明星, 徐明行, 等. 基于RAD-seq技术的异型花SSR信息分析[J]. 植物研究, 2017, 37(3):447−452.

    Wang J L, Zhu M X, Xu M X, et al. Analysis on SSR in Sinoswertia tetraptera base on RAD-seq[J]. Bulletin of Botanical Research, 2017, 37(3): 447−452.
    [9]
    黄兴发, 尹跃, 赵建华, 等. 黑果枸杞基因组SSR标记开发及遗传多样性分析[J]. 西北农林科技大学学报(自然科学版), 2021,49(1):126−135.

    Huang X F, Yin Y, Zhao J H, et al. Development of genomic SSR markers and genetic diversity analysis of Lycium ruthenicum Murr.[J]. Journal of Northwest A&F university (Natural Science Edition), 2021,49(1): 126−135.
    [10]
    Kumar A A, Deepak S, Archana V, et al. MSDB: a comprehensive, annotated database of microsatellites[J]. Nucleic Acids Research, 2020, 48(D1): D155−D159. doi: 10.1093/nar/gkz886
    [11]
    Andrews K R, Good J M, Miller M R, et al. Harnessing the power of RAD-seq for ecological and evolutionary genomics[J]. Nature Review Genetics, 2016, 17(2): 81−92. doi: 10.1038/nrg.2015.28
    [12]
    Hou Y, Nowak M D, Mirré V, et al. RAD-seq data point to a northern origin of the arctic-alpine genus Cassiope (Eri-caceae)[J]. Molecular Phylogenetics and Evolution, 2016, 95: 152−160. doi: 10.1016/j.ympev.2015.11.009
    [13]
    Yuan Z, Fang Y, Zhang T, et al. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology[J]. Plant Biotechnology Journal, 2018, 6(7): 1363−1374.
    [14]
    Miller M R, Dunham J P, Amores A, et al. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers[J]. Genome Research, 2007, 17(2): 240−248. doi: 10.1101/gr.5681207
    [15]
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet Journal, 2011, 17(1): 10−12.
    [16]
    Andreas U, Ioana C, Triinu K, et al. Primer3–new capabilities and interfaces[J]. Nucleic Acids Research, 2012, 40(15): e115. doi: 10.1093/nar/gks596
    [17]
    Schuelke M. An economic method for the fluorescent labeling of PCR fragments[J]. Nature Biotechnology, 2000, 18: 233−234. doi: 10.1038/72708
    [18]
    Hulce D, Li X, Snyder-Leiby T, et al. GeneMarker genotyping software: tools to increase the statistical power of DNA fragment analysis[J]. Journal of Biomolecular Techniques, 2011, 22(Suppl.): S35−S36.
    [19]
    Yeh F C, Yang R C, Boyle T, et al. POPGENE Version 1.32: Microsoft Windows-based freeware for populations genetic analysis[Z]. Edmonton: University of Alberta, 1999.
    [20]
    Marshall T C, Slate J, Kruuk L, et al. 1998. Statistical confidence for likelihood-based paternity inference in natural populations[J]. Molecular Ecology, 1998, 7(5): 639−655. doi: 10.1046/j.1365-294x.1998.00374.x
    [21]
    洪文娟, 郝兆祥, 刘康佳, 等. 基于石榴全基因组序列的SSR标记开发及鉴定[J]. 北京林业大学学报, 2019, 41(8):38−47.

    Hong W J, Hao Z X, Liu K J, et al. Development and identification of SSR molecular markers based on whole genomic sequences of Punica granatum[J]. Journal of Beijing Forestry University, 2019, 41(8): 38−47.
    [22]
    Feng J Y, Zhao S, Li M, et al. Genome-wide genetic diversity detection and population structure analysis in sweet potato (Ipomoea batatas) using RAD-seq[J]. Genomics, 2020, 112(2): 1978−1987. doi: 10.1016/j.ygeno.2019.11.010
    [23]
    刘瑞娟, 路兴旺, 窦全文. 基于简化基因组测序开发垂穗披碱草(Elymus nutans)SSR标记[J]. 分子植物育种, 2018, 16(6):1888−1894.

    Liu R J, Lu X W, Dou Q W. Development of SSR markers in Elymus nutans based on reduced-representation genome sequencing[J]. Molecular Plant Breeding, 2018, 16(6): 1888−1894.
    [24]
    宋立肖, 李国旗, 靳长青, 等. 大麻状罗布麻的全基因组分析和SSR标记开发[J]. 植物遗传资源学报, 2019, 20(5):1309−1316.

    Song L X, Li G Q, Jin C Q, et al. Whole genome sequencing and development of SSR markers in Apocynum cannabinum[J]. Journal of Plant Genetic Resources, 2019, 20(5): 1309−1316.
    [25]
    Morgante M, Hanafey M, Powell W, et al. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes[J]. Nature Genetics, 2002, 30(2): 194−200. doi: 10.1038/ng822
    [26]
    Huo N, Lazo G, Vogel J P, et al. The nuclear genome of Brachypodium distachyon: analysis of BAC end sequences[J]. Functional Integrative Genomics, 2008, 8(2): 135−147. doi: 10.1007/s10142-007-0062-7
    [27]
    Tóth G, Gáspári Z, Jurka J, et al. Microsatellites in different eukaryotic genomes: survey and analysis[J]. Genome Research, 2000, 10(7): 967. doi: 10.1101/gr.10.7.967
    [28]
    Yang Y Y, He R Q, Zheng J, et al. Development of EST-SSR markers and association mapping with floral traits in Syringa oblata[J]. BMC Plant Biology, 2020, 20(1): 436. doi: 10.1186/s12870-020-02652-5
    [29]
    Li D Y, Long C, Pang X M, et al. The newly developed genomic-SSR markers uncover the genetic characteristics and relationships of olive accessions[J]. PeerJ, 2020, 8: 341−345.
    [30]
    Haydar K, Ying L, Wieland M. Survey of simple sequence repeats in completed fungal genomes[J]. Molecular Biology & Evolution, 2005, 22: 639−649.
    [31]
    Tuskan G A, Gunter L E, Yang Z K, et al. Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa[J]. Canadian Journal of Forest Research, 2004, 34: 85−93. doi: 10.1139/x03-283
    [32]
    阎毛毛, 戴晓港, 李淑娴, 等. 松树、杨树及桉树表达基因序列微卫星比对分析[J]. 基因组学与应用生物学, 2011, 30(1):103−109. doi: 10.3969/gab.030.000103

    Yan M M, Dai X G, Li S X, et al. Sequence analysis and comparison of EST-SSRs in pine, poplar and eucalyptus[J]. Genomics and Applied Biology, 2011, 30(1): 103−109. doi: 10.3969/gab.030.000103
    [33]
    周晓君, 王海亮, 李方玲, 等. 基于RAD-seq技术开发灵宝杜鹃多态性SSR标记[J]. 农业生物技术学报, 2019, 27(1):55−62.

    Zhou X J, Wang H L, Li F L, et al. Development of polymorphic SSR markers in Rhododendron henanense subsp. lingbaoense based on RAD-seq[J]. Journal of Agricultural Biotechnology, 2019, 27(1): 55−62.
    [34]
    Beghè D, Molano J F G, Fabbri A, et al. Olive biodiversity in Colombia, a molecular study of local germplasm[J]. Scientia Horticulturae, 2015, 189: 122−131. doi: 10.1016/j.scienta.2015.04.003
    [35]
    Cregan P B, Jarvik T, Bush A L, et al. An integrated genetic linkage map of the soybean genome[J]. Crop Science, 1999, 39: 1464−1490. doi: 10.2135/cropsci1999.3951464x
    [36]
    Song Q J, Fickus E W, Cregan P B, et al. Characterization of trinucleotide SSR motifs in wheat[J]. Theoretical and Applied Genetics, 2002, 104: 286−293. doi: 10.1007/s001220100698
    [37]
    金玲, 刘明国, 董胜君, 等. 97个山杏无性系的遗传多样性及SSR指纹图谱[J]. 林业科学, 2018, 54(7):51−61. doi: 10.11707/j.1001-7488.20180706

    Jin L, Liu M G, Dong S J, et al. Genetic diversity and fingerprints of 97 Armeniaca sibirica clones based on SSR markers[J]. Scientia Silvae Sinicae, 2018, 54(7): 51−61. doi: 10.11707/j.1001-7488.20180706
  • Related Articles

    [1]Shang Shuaishuai, Song Minghua, Wang Chunmei, Qiu Jingcong, Wang Xinqing, Wang Shiqi, Cui Jiayi. Effects of long-term polymorphic nitrogen addition on soil N2O emission in temperate artificial Quercus liaotungensis forests[J]. Journal of Beijing Forestry University, 2022, 44(6): 63-73. DOI: 10.12171/j.1000-1522.20220136
    [2]Tian Qian, Liu Shuangwei, Niu Shihui, Li Wei. Development of SNP molecular markers of Pinus bungeana based on SLAF-seq technology[J]. Journal of Beijing Forestry University, 2021, 43(8): 1-8. DOI: 10.12171/j.1000-1522.20200211
    [3]Wang Xue, Song Shuang, Li Meiyu, Bo Wenhao, Li Yingyue, Pang Xiaoming, Cao Ming. Identification and expression analysis based on RNA-Seq of the pectin methylesterase gene family in Ziziphus jujuba[J]. Journal of Beijing Forestry University, 2021, 43(4): 8-16. DOI: 10.12171/j.1000-1522.20200338
    [4]Hong Wenjuan, Hao Zhaoxiang, Liu Kangjia, Luo Hua, Bi Runxia, Yuan Zhaohe, Zong Shixiang, Wang Jun. Development and identification of SSR molecular markers based on whole genomic sequences of Punica granatum[J]. Journal of Beijing Forestry University, 2019, 41(8): 38-47. DOI: 10.13332/j.1000-1522.20190167
    [5]Pan Liqin, Li Jiyuan, Li Shaocui, Fan Zhengqi, Yin Hengfu, He Libo. Development of SSR markers based on transcriptome of Camellia japonica and analysis of genetic relationship[J]. Journal of Beijing Forestry University, 2019, 41(7): 111-120. DOI: 10.13332/j.1000-1522.20190101
    [6]Han Zhiqiang, Ren Yongyu, Xia Yufei, Geng Xining, Du Kang, Kang Xiangyang. Construction of polymorphic SSR primer library and germplasm resource fingerprint database of Populus tomentosa[J]. Journal of Beijing Forestry University, 2019, 41(7): 10-18. DOI: 10.13332/j.1000-1522.20190040
    [7]LIU Jin-chun, MA Ye, TAO Jian-ping, GAO Kai-min, LIANG Qian-hui. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 110-116. DOI: 10.13332/j.1000-1522.20150057
    [8]DONG Ai-xiang, WANG Tao, XU Jin, ZHAO Liang-jun. .Genetic relationship of germplasm resources of Salvia splendens using SRAP marker. J[J]. Journal of Beijing Forestry University, 2012, 34(5): 134-138.
    [9]BAI Xue, ZHANG Shu-jing, ZHENG Cai-xia, HAO Jian-qing, LI Wen-hai, YANG Yang. Comparative study on photosynthesis and water physiology of polymorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(6): 47-52.
    [10]CUI Bin-bin, LI Yun, JIN Xiao-jie, FENG Hui. Genetic characters and polymorphism of chloroplast and mitochondrial DNA in white poplars[J]. Journal of Beijing Forestry University, 2006, 28(6): 9-14.
  • Cited by

    Periodical cited type(6)

    1. 刘巍,张妍,彭儒胜,尹杰,杨冰. 35份北方地区杨树种质资源的遗传多样性及种质指纹图谱的构建. 东北林业大学学报. 2024(10): 19-26 .
    2. 赵娟,朱凯凯,鲍佳书,徐惠强,李新芝,黄金勇,谭鹏鹏,彭方仁. 薄壳山核桃种质资源的SSR标记分析及数字指纹构建. 植物资源与环境学报. 2023(02): 10-17 .
    3. 蔡天润,郭佳,王紫怡,宋亚欣,张淑敏,杨敏生,张军. 基于SSR分子标记的山地刺槐克隆生长空间格局分析. 林业科学. 2023(06): 19-27 .
    4. 刘巍,蔄胜军,苏晓华,彭儒胜,吴建军. 黑杨派杨树种质资源的SSR分析及鉴定. 西南林业大学学报(自然科学). 2022(01): 13-22 .
    5. 王妍,李立华,徐宗艺,王艳敏,李静,白卉. 东北地区主栽杨树品种的SSR分析及鉴定. 东北林业大学学报. 2021(04): 24-32+38 .
    6. 李慧,徐瑞瑞,刘东超,李圣波,刘忠华. 皱皮木瓜品种的遗传多样性和SSR指纹图谱分析. 分子植物育种. 2021(22): 7519-7529 .

    Other cited types(5)

Catalog

    Article views (1596) PDF downloads (80) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return