Citation: | Wang Xue, Song Shuang, Li Meiyu, Bo Wenhao, Li Yingyue, Pang Xiaoming, Cao Ming. Identification and expression analysis based on RNA-Seq of the pectin methylesterase gene family in Ziziphus jujuba[J]. Journal of Beijing Forestry University, 2021, 43(4): 8-16. DOI: 10.12171/j.1000-1522.20200338 |
[1] |
Daher F B, Braybrook S A. How to let go: pectin and plant cell adhesion[J]. Frontiers in Plant Science, 2015, 6: 523.
|
[2] |
Cosgrove D J. Diffuse growth of plant cell walls[J]. Plant Physiology, 2018, 176(1): 16−27. doi: 10.1104/pp.17.01541
|
[3] |
Pelloux J, Rusterucci C, Mellerowicz E J. New insights into pectin methylesterase structure and function[J]. Trends Plant Science, 2007, 12(6): 267−277. doi: 10.1016/j.tplants.2007.04.001
|
[4] |
Wolf S, Rausch T, Greiner S. The N-terminal pro region mediates retention of unprocessed type- Ⅰ PME in the Golgi apparatus[J]. The Plant Journal, 2009, 58(3): 361−375. doi: 10.1111/j.1365-313X.2009.03784.x
|
[5] |
Pelletier S, van Orden J, Wolf S, et al. A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls[J]. New Phytologist, 2010, 188(3): 726−739. doi: 10.1111/j.1469-8137.2010.03409.x
|
[6] |
Pilling J, Willmitzer L, Fisahn J. Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L. enhances stem elongation and modifies cation distribution[J]. Planta, 2000, 210(3): 391−399. doi: 10.1007/PL00008147
|
[7] |
Levesque-Tremblay G, Müller K, Mansfield S D, et al. Highly methyl esterified seeds is a pectin methyl esterase involved in embryo development[J]. Plant Physiology, 2015, 167(3): 725−737. doi: 10.1104/pp.114.255604
|
[8] |
Jiang L, Yang S L, Xie L F, et al. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract[J]. The Plant Cell, 2005, 17(2): 584−596. doi: 10.1105/tpc.104.027631
|
[9] |
Bosch M, Cheung A Y, Hepler P K. Pectin methylesterase, a regulator of pollen tube growth[J]. Plant Physiology, 2005, 138(3): 1334−1346. doi: 10.1104/pp.105.059865
|
[10] |
Pombo M A, Dotto M C, Martínez G A, et al. UV-C irradiation delays strawberry fruit softening and modifies the expression of genes involved in cell wall degradation[J]. Postharvest Biology and Technology, 2009, 51(2): 141−148. doi: 10.1016/j.postharvbio.2008.07.007
|
[11] |
Wei J, Ma F, Shi S, et al. Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit[J]. Postharvest Biology and Technology, 2010, 56(2): 147−154. doi: 10.1016/j.postharvbio.2009.12.003
|
[12] |
Tieman D M, Harriman R W, Ramamohan G, et al. An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit[J]. The Plant Cell, 1992, 4(6): 667−679. doi: 10.2307/3869525
|
[13] |
Xue C, Guan S C, Chen J Q, et al. Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening[J]. BMC Plant Biology, 2020, 20(1): 1−17. doi: 10.1186/s12870-019-2170-7
|
[14] |
Li M J. Genetic diversity of Chinese jujube (Ziziphus jujuba Mill.)[C]//XXVI International Horticultural Congress: plant genetic resources. Toronto: The Fabric of Horticultures Future 623, 2002: 351−355.
|
[15] |
Gao Q H, Wu C S, Wang M. The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits[J]. Journal of Agricultural and Food Chemistry, 2013, 61(14): 3351−3363. doi: 10.1021/jf4007032
|
[16] |
Liu M J, Zhao J, Cai Q L, et al. The complex jujube genome provides insights into fruit tree biology[J]. Nature Communications, 2014, 5(1): 1−12.
|
[17] |
Huang J, Zhang C, Zhao X, et al. The jujube genome provides insights into genome evolution and the domestication of sweetness/acidity taste in fruit trees[J]. PLoS Genetics, 2016, 12(12): e1006433. doi: 10.1371/journal.pgen.1006433
|
[18] |
Chen C, Chen H, He Y, et al. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface[J/OL]. BioRxiv, [2020−01−06]. https://www.biorxiv.org/content/10.1101/289660v1.
|
[19] |
Louvet R, Cavel E, Gutierrez L, et al. Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana[J]. Planta, 2006, 224(4): 782−791. doi: 10.1007/s00425-006-0261-9
|
[20] |
Wang M, Yuan D, Gao W, et al. A comparative genome analysis of PME and PMEI families reveals the evolution of pectin metabolism in plant cell walls[J]. PLoS ONE, 2013, 8(8): e72082. doi: 10.1371/journal.pone.0072082
|
[21] |
Haas B J, Wortman J R, Ronning C M, et al. Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release[J]. BMC Biology, 2005, 3(1): 7. doi: 10.1186/1741-7007-3-7
|
[22] |
吴丽萍, 唐岩, 李颖岳, 等. 枣和酸枣基因组大小测定[J]. 北京林业大学学报, 2013, 35(3):77−83.
Wu L P, Tang Y, Li Y Y, et al. Estimation of genome size of Ziziphus jujuba and Z. acdiojujuba[J]. Journal of Beijing Forestry University, 2013, 35(3): 77−83.
|
[23] |
Tian G W, Chen M H, Zaltsman A, et al. Pollen-specific pectin methylesterase involved in pollen tube growth[J]. Developmental Biology, 2006, 294(1): 83. doi: 10.1016/j.ydbio.2006.02.026
|
[24] |
He X, Zhang J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution[J]. Genetics, 2005, 169(2): 1157−1164. doi: 10.1534/genetics.104.037051
|
[25] |
Zhang L, Xue J A, Yu H Q, et al. Expression and function analysis of pectin methylesterase genes which regulate and control the petal falling in Arabidopsis[J]. Plant Physiology Communications, 2012, 48(4): 350−358.
|
[26] |
Brummell D A, Harpster M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants[J]. Plant Cell Walls, 2001: 311−340.
|
[27] |
Ng J K T, Schröder R, Sutherland P W, et al. Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus × domestica) fruit growth[J]. BMC Plant Biology, 2013, 13(1): 183. doi: 10.1186/1471-2229-13-183
|
[28] |
李欢. 枣果实成熟软化的细胞壁物质代谢及其基因表达研究[D]. 咸阳: 西北农林科技大学, 2017.
Li H. Study on cell wall metabolism and gene expression of ripening and softening jujube fruit[D]. Xianyang: Northwest A&F University, 2017.
|
[1] | Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374 |
[2] | Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148 |
[3] | Sun Zhilin, Liu Bing, Li Xiaowei, Tian Yuzhen, Zhang Qing, Cao Qingqin. Functional research of transcription factor CmHAT1 regulating the development of somatic embryo in Castanea mollissima[J]. Journal of Beijing Forestry University, 2024, 46(5): 73-81. DOI: 10.12171/j.1000-1522.20230215 |
[4] | Li Yapeng, Sun Yuhan, Lin Huazhong, Fang Luming, Yu Xiaolong, Weng Jianyu, Zhang Yungen, Li Yun. Correlations between microsporogenesis and male cone development of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(1): 51-58. DOI: 10.12171/j.1000-1522.20210251 |
[5] | Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. DOI: 10.13332/j.1000-1522.20180040 |
[6] | ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411 |
[7] | LI Zhe-xin, NIU Shi-hui, GAO Qiong, LI Wei.. Cytological study of gibberellin regulated xylem development.[J]. Journal of Beijing Forestry University, 2014, 36(2): 68-73. |
[8] | MA Yu-lei, TANG Xing-lin, LI Xiao-yuan, PAN Hui-tang, ZHANG Qi-xiang.. Effects of photoperiod and temperature on growth and development of Primula maximowiczii.[J]. Journal of Beijing Forestry University, 2013, 35(5): 97-103. |
[9] | LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24. |
[10] | BAO Ren-yan, JIANG Chun-ning, ZHENG Cai-xia, DING Kun-shan. Molecular mechanism of the regulation of female gametophyte development in plants[J]. Journal of Beijing Forestry University, 2005, 27(4): 90-96. |
1. |
翁慧莹,刘益鹏,杨黔越,叶兴状,毕远洋,张国防,陈世品,刘宝. 福建柏地理分布及随气候变化的分布格局模拟. 生态学报. 2025(01): 137-146 .
![]() | |
2. |
罗楚滢,佘济云,唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测. 南京林业大学学报(自然科学版). 2024(01): 161-168 .
![]() | |
3. |
童丽丽,程瑶,许晓岗,王洪超,田露,蒋孝禹. 未来气候变化下白花龙在我国的潜在适生区预测. 浙江林业科技. 2024(05): 1-8 .
![]() | |
4. |
肖模佳,徐放,张炳建,曾梓锋. 国有林场珍贵树种发展策略浅析. 农业与技术. 2023(01): 42-44 .
![]() | |
5. |
张华峰. 珍稀濒危物种金斑喙凤蝶在我国潜在适生区预测. 井冈山大学学报(自然科学版). 2023(03): 56-62 .
![]() | |
6. |
何学高,刘欢,张婧,程炜,丁鹏,贾丰铭,李卿,刘超. 基于优化的MaxEnt模型预测青海省祁连圆柏潜在分布区. 北京林业大学学报. 2023(12): 19-31 .
![]() | |
7. |
刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 .
![]() |