Citation: | Luo Youqing, Liu Yujie, Huang Huaguo, Yu Linfeng, Ren Lili. Pathway and method of forest health assessment using remote sensing technology[J]. Journal of Beijing Forestry University, 2021, 43(9): 1-13. DOI: 10.12171/j.1000-1522.20210107 |
[1] |
许勤. 绿色就是固碳造林等于减排:记国家林业局造林司司长魏殿生[J]. 林业经济, 2003(2):10−11.
Xu Q. Green means carbon sequestration and afforestation equals emission reduction: Wei Diansheng, director of afforestation department of State Forestry Administration[J]. Forestry Economy, 2003(2): 10−11.
|
[2] |
高均凯. 深入研究森林健康积极探索中国森林健康之路[J]. 北京林业管理干部学院学报, 2005(1):22−25.
Gao J K. Research on the implementation of forest health strategy in China[J]. State Academy of Forestry Administration Journal, 2005(1): 22−25.
|
[3] |
王云霖. 我国人工林发展研究[J]. 林业资源管理, 2019(1):6−11.
Wang Y L. Research on plantation development in China[J]. Forestry Resource Management, 2019(1): 6−11.
|
[4] |
胡爽, 徐誉远, 王本洋. 我国森林健康评价方法综述[J]. 林业与环境科学, 2017, 33(1):90−96. doi: 10.3969/j.issn.1006-4427.2017.01.017
Hu S, Xu Y Y, Wang B Y. Review of forest health monitoring and assessment in China[J]. Forestry and Environmental Science, 2017, 33(1): 90−96. doi: 10.3969/j.issn.1006-4427.2017.01.017
|
[5] |
王秋燕, 陈鹏飞, 李学东, 等. 森林健康评价方法综述[J]. 南京林业大学学报(自然科学版), 2018, 42(2):177−183.
Wang Q Y, Chen P F, Li X D, et al. Review of forest health assessment methods[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(2): 177−183.
|
[6] |
Pause M, Schweitzer C, Rosenthal M, et al. In situ/remote sensing integration to assess forest health: a review[J/OL]. Remote Sensing, 2016, 8(6): 471 [2021−01−12]. https://doi.org/10.3390/rs8060471.
|
[7] |
金瑞华, 张宏名, 林培. 浅谈生物灾害遥感监测[J]. 遥感信息, 1991(3):35−37.
Jin R H, Zhang H M, Lin P. Discussion on remote sensing monitoring of biological disasters[J]. Remote Sensing Information, 1991(3): 35−37.
|
[8] |
高广磊, 信忠保, 丁国栋, 等. 基于遥感技术的森林健康研究综述[J]. 生态学报, 2013, 33(6):1675−1689. doi: 10.5846/stxb201112011838
Gao G L, Xin Z B, Ding G D, et al. Forest health studies based on remote sensing: a review[J]. Acta Ecologica Sinica, 2013, 33(6): 1675−1689. doi: 10.5846/stxb201112011838
|
[9] |
何兴元, 任春颖, 陈琳, 等. 森林生态系统遥感监测技术研究进展[J]. 地理科学, 2018, 38(7):997−1011.
He X Y, Ren C Y, Chen L, et al. The progress of forest ecosystems monitoring with remote sensing techniques [J]. Scientia Geographica Sinica, 2018, 38(7): 997−1011.
|
[10] |
王彦辉, 肖文发, 张星耀. 森林健康监测与评价的国内外现状和发展趋势[J]. 林业科学, 2007, 43(7):84−91.
Wang Y H, Xiao W F, Zhang X Y. Current status and development tendency of forest health monitoring and evaluation[J]. Scientia Silvae Sinicae, 2007, 43(7): 84−91.
|
[11] |
马有国, 杜学惠. 森林健康评价的遥感技术研究[J]. 森林工程, 2019, 35(2):37−44.
Ma Y G, Du X H. Remote sensing technology for forest health assessment[J]. Forest Engineering, 2019, 35(2): 37−44.
|
[12] |
Lausch A, Borg E, Bumberger J, et al. Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches[J/OL]. Remote Sensing, 2018, 10(7): 1120 [2021−01−15]. https://doi.org/10.3390/rs10071120.
|
[13] |
Lausch A, Stefan E, Douglas K, et al. Understanding forest health with remote sensing (I): a review of spectral traits, processes and remote sensing characteristics[J/OL]. Remote Sensing, 2016, 8(10): 1029 [2020−12−19]. https://doi.org/10.3390/rs8121029.
|
[14] |
Lausch A, Stefan E, Douglas K, et al. Understanding forest health with remote sensing (II): a review of approaches and data models[J/OL]. Remote Sensing, 2017, 9(2): 129 [2020−12−28]. https://doi.org/10.3390/rs10071120.
|
[15] |
高均凯. 森林健康基本理论及评价方法研究[D]. 北京: 北京林业大学, 2007.
Gao J K. Basic theory and evaluation method of forest health[D]. Beijing: Beijing Forestry University, 2007.
|
[16] |
Costanza R. Toward an operational definition of ecosystem health [M]//Costanza R, Norton B G, Haskell B D, eds. Ecosystem health: new goals for environmental management. Washington D C: Island Press, 1992: 239−256.
|
[17] |
Senf C, Seidl R, Hostert P. Remote sensing of forest insect disturbances: current state and future directions[J]. International Journal of Applied Earth Observation & Geoinformation, 2017, 60: 49−60.
|
[18] |
Felbermeier B, Hahn A, Schneider T. Study on user requirements for remote sensing applications in forestry[C/OL]. ISPRS TC VII Symposium – 100 Years ISPRS. 2010 [2021−02−13]. https://www.researchgate.net/profile/Thomas-Schneider-10/publication/266412426_STUDY_ON_USER_REQUIREMENTS_FOR_REMOTE_SENSING_APPLICATIONS_IN_FORESTRY/links/55b6566a08ae092e9655d92c/STUDY-ON-USER-REQUIREMENTS-FOR-REMOTE-SENSING-APPLICATIONS-IN-FORESTRY.pdf.
|
[19] |
Fabian E, Hooman L, Krzysztof S, et al. Review of studies on tree species classification from remotely sensed data[J]. Remote Sensing of Environment, 2016, 186: 64−97. doi: 10.1016/j.rse.2016.08.013
|
[20] |
孔嘉鑫, 张昭臣, 张健. 基于多源遥感数据的植物物种分类与识别: 研究进展与展望[J]. 生物多样性, 2019, 27(7):796−812. doi: 10.17520/biods.2019197
Kong J X, Zhang Z C, Zhang J. Classification and identification of plant species based on multi-source remote sensing data: research progress and prospect[J]. Biodiversity Science, 2019, 27(7): 796−812. doi: 10.17520/biods.2019197
|
[21] |
Ferreira M, Zortea M, Zanotta D, et al. Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data[J]. Remote Sensing of Environment, 2016, 179: 66−78. doi: 10.1016/j.rse.2016.03.021
|
[22] |
Asner G. Biophysical and biochemical sources of variability in canopy reflectance[J]. Remote Sensing of Environment, 1998, 64(3): 234−253. doi: 10.1016/S0034-4257(98)00014-5
|
[23] |
Clark M, Roberts D, Clark B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales[J]. Remote Sensing of Environment, 2005, 96(3−4): 375−398. doi: 10.1016/j.rse.2005.03.009
|
[24] |
Leckie D, Tinis S, Nelson T, et al. Issues in species classification of trees in old growth conifer stands[J]. Canadian Journal of Remote Sensing, 2005, 31(2): 175−190. doi: 10.5589/m05-004
|
[25] |
马鸿伟, 刘海, 姚顺彬, 等. 基于林业遥感的树种分类应用分析与展望[J]. 林业资源管理, 2020(3):118−121.
Ma H W, Liu H, Yao S B, et al. Application and prospect of tree species classification based on forest remote sensing[J]. Forestry Resource Management, 2020(3): 118−121.
|
[26] |
Cao J, Leng W, Liu K, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J/OL]. Remote Sensing, 2018, 10(2): 89 [2021−01−16]. https://doi.org/10.3390/rs10010089.
|
[27] |
Franklin S, Hall R, Moskal L, et al. Incorporating texture into classification of forest species composition from airborne multispectral images[J]. International Journal of Remote Sensing, 2000, 21(1): 61−79. doi: 10.1080/014311600210993
|
[28] |
Sayn-Wittgenstein L. Recognition of tree species on aerial photographs[J/OL]. Forest Management Institute Information Report, 1978, FMR-X-118 [2021−01−19]. https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/29443.pdf.
|
[29] |
Mallinis G, Koutsias N, Tsakiri-Strati M, et al. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2008, 63(2): 237−250.
|
[30] |
Chuine I, Beaubien E. Phenology is a major determinant of tree species range[J]. Ecology Letters, 2001, 4: 500−510. doi: 10.1046/j.1461-0248.2001.00261.x
|
[31] |
Gärtner P, Förster M, Kleinschmit B. The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring[J]. Remote Sensing of Environment, 2016, 177: 237−247. doi: 10.1016/j.rse.2016.01.028
|
[32] |
Signoroni A, Savardi M, Baronio A, et al. Deep learning meets hyperspectral image analysis: a multidisciplinary review[J/OL]. Journal of Imaging, 2019, 5(5): 52 [2021−02−13]. https://doi.org/10.3390/jimaging5050052.
|
[33] |
徐岩, 张聪伶, 降瑞娇, 等. 无人机高光谱影像与冠层树种多样性监测[J]. 生物多样性, 2021, 29(5):647−660. doi: 10.17520/biods.2021013
Xu Y, Zhang C L, Xiang R J, et al. UAV-based hyperspectral images and monitoring of canopy tree diversity[J]. Biodiversity Science, 2021, 29(5): 647−660. doi: 10.17520/biods.2021013
|
[34] |
Asner G, Knapp D, Kennedy-Bowdoin T, et al. Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR[J]. Remote Sensing of Environment, 2008, 112(5): 1942−1955. doi: 10.1016/j.rse.2007.11.016
|
[35] |
Riaño D, Chuvieco E, Condés S. Generation of crown bulk density for Pinus sylvestris L. from lidar[J]. Remote Sensing of Environment, 2004, 92: 345−352. doi: 10.1016/j.rse.2003.12.014
|
[36] |
Coops N, Hilker T, Wulder M, et al. Estimating canopy structure of douglas-fir forest stands from discrete-return LiDAR[J]. Trees, 2007, 21: 295−310. doi: 10.1007/s00468-006-0119-6
|
[37] |
Suratno A, Seielstad C, Queen L. Tree species identification in mixed coniferous forest using airborne laser scanning[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2009, 64(6): 683−693.
|
[38] |
Korpela I, Orka H, Hyyppae J, et al. Range and AGC normalization in airborne discrete-return LiDAR intensity data for forest canopies[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2010, 65(4): 369−379.
|
[39] |
Kim S, McGaughey R, Andersen H, et al. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data[J]. Remote Sensing of Environment, 2009, 113(8): 1575−1586. doi: 10.1016/j.rse.2009.03.017
|
[40] |
黄华国. 激光雷达技术在林业科学研究中的进展分析[J]. 北京林业大学学报, 2013, 35(3):134−143.
Huang H G. Progress analysis of LiDAR research on forestry science studies[J]. Journal of Beijing Forestry University, 2013, 35(3): 134−143.
|
[41] |
郭庆华, 刘瑾, 李玉美, 等. 生物多样性近地面遥感监测: 应用现状与前景展望[J]. 生物多样性, 2016, 24(11):1249−1266. doi: 10.17520/biods.2016059
Guo Q H, Liu J, Li Y M, et al. A near-surface remote sensing platform for biodiversity monitoring: perspectives and prospects[J]. Biodiversity Science, 2016, 24(11): 1249−1266. doi: 10.17520/biods.2016059
|
[42] |
Michez A, Piegay H, Lisein J, et al. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system[J/OL]. Environmental Monitoring & Assessment, 2016, 188: 146 [2021−01−19]. https://link.springer.com/article/10.1007/s10661-015-4996-2.
|
[43] |
Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007, 28: 823−870. doi: 10.1080/01431160600746456
|
[44] |
Cheng J, Bo Y, Zhu Y, et al. A novel method for assessing the segmentation quality of high-spatial resolution remote-sensing images[J]. International Journal of Remote Sensing, 2014, 35: 3816−3839. doi: 10.1080/01431161.2014.919678
|
[45] |
Aguirre-Gutiérrez J, Seijmonsbergen A, Duivenvoorden J. Optimizing land cover classification accuracy for change detection, a combined pixel-based and object-based approach in a mountainous area in Mexico[J]. Applied Geography, 2012, 34: 29−37. doi: 10.1016/j.apgeog.2011.10.010
|
[46] |
Larsen M, Eriksson M, Descombes X, et al. Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions[J]. International Journal of Remote Sensing, 2011, 32(20): 5827−5852. doi: 10.1080/01431161.2010.507790
|
[47] |
肖风劲, 欧阳华, 孙江华, 等. 森林生态系统健康评价指标与方法[J]. 林业资源管理, 2004(1):27−30. doi: 10.3969/j.issn.1002-6622.2004.01.007
Xiao F J, Ouyang H, Sun J H, et al. Forest ecosystem health assessment indicators and methods[J]. Forest Resources Management, 2004(1): 27−30. doi: 10.3969/j.issn.1002-6622.2004.01.007
|
[48] |
Schlemmer M, Gitelson A, Schepers J, et al. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 25: 47−54.
|
[49] |
Inoue Y, Sakaiya E, Zhu Y, et al. Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements[J]. Remote Sensing of Environment, 2012, 126: 210−221. doi: 10.1016/j.rse.2012.08.026
|
[50] |
Xie Q, Huang W, Liang D, et al. Leaf area index estimation using vegetation indices derived from airborne hyperspectral images in winter wheat[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(8): 3586−3594. doi: 10.1109/JSTARS.2014.2342291
|
[51] |
黄华国. 林业定量遥感研究进展和展望[J]. 北京林业大学学报, 2019, 41(12):1−14. doi: 10.12171/j.1000-1522.20190326
Huang H G. Progress and prospect of quantitative remote sensing in forestry[J]. Journal of Beijing Forestry University, 2019, 41(12): 1−14. doi: 10.12171/j.1000-1522.20190326
|
[52] |
黄华国. 三维遥感机理模型RAPID原理及其应用[J]. 遥感技术与应用, 2019, 34(5):901−913.
Huang H G. Principles and applications of the three-dimensional remote sensing mechanism model RAPID[J]. Remote Sensing Technology and Application, 2019, 34(5): 901−913.
|
[53] |
Paul J. Remote sensing of foliar chemistry[J]. Remote Sensing of Environment, 1989, 30(3): 271−278. doi: 10.1016/0034-4257(89)90069-2
|
[54] |
Daughtry C, Walthall C, Kim M, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74: 229−239. doi: 10.1016/S0034-4257(00)00113-9
|
[55] |
Datt B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves[J]. Remote Sensing of Environment, 1998, 66: 111−121. doi: 10.1016/S0034-4257(98)00046-7
|
[56] |
Asner G, Martin R. Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests[J]. Frontiers in Ecology and the Environment, 2009, 7: 269−276. doi: 10.1890/070152
|
[57] |
Ustin S, Gitelson A, Jacquemoud S, et al. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy[J]. Remote Sensing of Environment, 2009, 113: 67−77. doi: 10.1016/j.rse.2008.10.019
|
[58] |
Malenovský Z, Homolová L, Zurita-Milla R, et al. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer[J]. Remote Sensing of Environment, 2013, 131: 85−102. doi: 10.1016/j.rse.2012.12.015
|
[59] |
McManus K, Asner G, Martin R, et al. Phylogenetic structure of foliar spectral traits in tropical forest canopies[J/OL]. Remote Sensing, 2016, 8(3): 196 [2021−01−18]. https://doi.org/10.3390/rs8030196.
|
[60] |
Serrano L, Penuelas J, Ustin S. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals[J]. Remote Sensing of Environment, 2002, 81: 355−364. doi: 10.1016/S0034-4257(02)00011-1
|
[61] |
Thenkabail P, Lyon J, Huete A. Hyperspectral remote sensing of vegetation[M]. Boca Raton: CRC Press, 2016.
|
[62] |
Assal T, Anderson P, Sibold J. Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem[J]. Forest Ecology and Management, 2016, 365: 137−151. doi: 10.1016/j.foreco.2016.01.017
|
[63] |
Klosterman S, Hufkens K, Gray J, et al. Gray J, et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery[J]. Biogeosciences, 2014, 11: 4305−4320. doi: 10.5194/bg-11-4305-2014
|
[64] |
van Wittenberghe S, Verrelst J, Rivera J, et al. Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset[J]. Journal of Photochemistry and Photobiology B-Biology, 2014, 134: 37−48. doi: 10.1016/j.jphotobiol.2014.03.010
|
[65] |
Asner G, Knapp D, Anderson C, et al. Large-scale climatic and geophysical controls on the leaf economics spectrum[J]. PNAS, 2016, 113: 4043−4051. doi: 10.1073/pnas.1604863113
|
[66] |
Schlerf M, Atzberger C, Hill J, et al. Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies, L. Karst.) using imaging spectroscopy[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12: 17−26. doi: 10.1016/j.jag.2009.08.006
|
[67] |
章钊颖, 王松寒, 邱博, 等. 日光诱导叶绿素荧光遥感反演及碳循环应用进展[J]. 遥感学报, 2019, 23(1):37−52.
Zhang Z Y, Wang S H, Qiu B, et al. Remote sensing retrieval of sunlight induced chlorophyll fluorescence and application of carbon cycle[J]. Acta Remote Sensing, 2019, 23(1): 37−52.
|
[68] |
Potter C, Randerson J, Field C, et al. Terrestrial ecosystem production-A process model-based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7: 811−841. doi: 10.1029/93GB02725
|
[69] |
Li X, Xiao J, He B, et al. Chlorophyll fluorescence observed by OCO-2 is strongly related to gross primary productivity estimated from flux towers in temperate forests[J]. Remote Sensing of Environment, 2018, 204: 659−671. doi: 10.1016/j.rse.2017.09.034
|
[70] |
郭庆华, 胡天宇, 马勤, 等. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4):418−435. doi: 10.17521/cjpe.2019.0206
Guo Q H, Hu T Y, Ma Q, et al. Advances for the new remote sensing technology in ecosystem ecology research[J]. Chinese Journal of Plant Ecology, 2020, 44(4): 418−435. doi: 10.17521/cjpe.2019.0206
|
[71] |
Frydenvang J, Maarschalkerweerd M, Carstensen A, et al. Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence[J]. Plant Physiology, 2015, 169: 353−361. doi: 10.1104/pp.15.00823
|
[72] |
Sun Y, Frankenberg C, Wood J, et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence[J]. Science, 2017, 358: 747.
|
[73] |
Wolanin A, Rozanov V, Dinter T, et al. Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements: feasibility study and first results[J]. Remote Sensing of Environment, 2015, 166: 243−261. doi: 10.1016/j.rse.2015.05.018
|
[74] |
Köhler P, Guanter L, Joiner J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data[J]. Atmospheric Measurement Techniques, 2015, 8(6): 2589−2608. doi: 10.5194/amt-8-2589-2015
|
[75] |
Mcroberts R, Næsset E, Gobakken T. Inference for lidar-assisted estimation of forest growing stock volume[J]. Remote Sensing of Environment, 2013, 128: 268−275. doi: 10.1016/j.rse.2012.10.007
|
[76] |
Cartus O, Kellndorfer J, Rombach M. Mapping canopy height and growing stock volume using airborne lidar, ALOS PALSAR and Landsat ETM+[J]. Remote Sensing, 2012, 4: 3320−3345. doi: 10.3390/rs4113320
|
[77] |
李增元, 赵磊, 李堃, 等. 合成孔径雷达森林资源监测技术研究综述[J]. 南京信息工程大学学报, 2020, 12(2):150−158.
Li Z Y, Zhao L, Li K, et al. A survey of developments on forest resources monitoring technology of synthetic aperture radar[J]. Journal of Nanjing University of Information Technology, 2020, 12(2): 150−158.
|
[78] |
李亚东, 冯仲科, 明海军, 等. 无人机航测技术在森林蓄积量估测中的应用[J]. 测绘通报, 2017(4):63−66.
Li Y D, Feng Z K, Ming H J, et al. Application of UAV aerial survey technology in forest volume estimation[J]. Surveying and Mapping Bulletin, 2017(4): 63−66.
|
[79] |
黄麟, 张晓丽, 石韧. 森林病虫害遥感监测技术研究的现状与问题[J]. 遥感信息, 2006(2):71−75. doi: 10.3969/j.issn.1000-3177.2006.02.020
Huang L, Zhang X L, Shi R. Current status and problems in monitoring forest damage caused by diseases and insects based on remote sensing[J]. Remote Sensing Information, 2006(2): 71−75. doi: 10.3969/j.issn.1000-3177.2006.02.020
|
[80] |
王蕾, 骆有庆, 张晓丽, 等. 遥感技术在森林病虫害监测中的应用研究进展[J]. 世界林业研究, 2008, 21(5):37−43.
Wang L, Luo Y Q, Zhang X L, et al. Application development of remote sensing technology in the assessment of forest pest disaster[J]. World Forestry Research, 2008, 21(5): 37−43.
|
[81] |
Stone C, Mohammed C. Application of remote sensing technologies for assessing planted forests damaged by insect pests and fungal pathogens: a review[J]. Current Forestry Reports, 2017, 3(2): 1−18.
|
[82] |
Hall R J, van der Sanden J J, Freeburn J T, et al. Remote sensing of natural disturbance caused by insect defoliation and dieback: a review[R]. Edmonton: Natural Resources Canada, 2016.
|
[83] |
Coops N, Johnson M, Wulder M, et al. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation[J]. Remote Sensing of Environment, 2006, 103(1): 67−80. doi: 10.1016/j.rse.2006.03.012
|
[84] |
Bright B, Hudak A, McGaughey R, et al. Predicting live and dead tree basal area of bark beetle affected forests from discrete-return lidar[J]. Canadian Journal of Remote Sensing, 2013, 39: 99−111. doi: 10.5589/m13-027
|
[85] |
Carter G, Knapp A. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration[J]. American Journal of Botany, 2001, 88: 677−684. doi: 10.2307/2657068
|
[86] |
Ustin S, Roberts D, Gamon J, et al. Using imaging spectroscopy to study ecosystem processes and properties[J]. Bioscience, 2004, 54: 523−534. doi: 10.1641/0006-3568(2004)054[0523:UISTSE]2.0.CO;2
|
[87] |
Niemann K, Quinn G, Stephen R, et al. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment[J]. Canadian Journal of Remote Sensing, 2015, 41(3): 191−202. doi: 10.1080/07038992.2015.1065707
|
[88] |
Hernández-Clemente R, Hornero A, Mottus M, et al. Early diagnosis of vegetation health from high-resolution hyperspectral and thermal imagery: lessons learned from empirical relationships and radiative transfer modelling[J]. Current Forestry Reports, 2019, 5: 169−183. doi: 10.1007/s40725-019-00096-1
|
[89] |
Abdullah H, Darvishzadeh R, Skidmore A, et al. European spruce bark beetle (Ips typographus L.) green attack affects foliar reflectance and biochemical properties[J]. International Journal of Applied Earth Observation & Geoinformation, 2018, 64: 199−209.
|
[90] |
Peterson D, Aber J, Matson P, et al. Remote sensing of forest canopy and leaf biochemical contents[J]. Remote Sensing of Environment, 1988, 24: 85−108. doi: 10.1016/0034-4257(88)90007-7
|
[91] |
徐华潮, 骆有庆, 张廷廷, 等. 松材线虫自然侵染后松树不同感病阶段针叶光谱特征变化[J]. 光谱学与光谱分析, 2011, 31(5):1352−1356. doi: 10.3964/j.issn.1000-0593(2011)05-1352-05
Xu H C, Luo Y Q, Zhang T T, et al. Changes of reflectance spectra of pine needles in different stage after being infected by pine wood nematode[J]. Spectroscopy and Spectral Analysis, 2011, 31(5): 1352−1356. doi: 10.3964/j.issn.1000-0593(2011)05-1352-05
|
[92] |
Liu Y J, Zhan Z Y, Ren L L, et al. Hyperspectral evidence of early-stage pine shoot beetle attack in Yunnan pine[J]. Forest Ecology and Management, 2021, 497: 1118−1127.
|
[93] |
Yu L, Zhan Z, Ren L, et al. Evaluating the potential of worldview-3 data to classify different shoot damage ratios of Pinus yunnanensis[J/OL]. Forests, 2020, 11: 417 [2021−01−14]. https://doi.org/10.3390/f11040417.
|
[94] |
Zhan Z, Yu L, Ren L, et al. Combining GF-2 and Sentinel-2 images to detect tree mortality caused by red turpentine beetle during the early outbreak stage in north China[J]. Forests, 2020, 11(2): 172. doi: 10.3390/f11020172
|
[95] |
Senf C, Pflugmacher D, Hostert P, et al. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 453−463. doi: 10.1016/j.isprsjprs.2017.07.004
|
[96] |
Yu L, Huang J, Zong S, et al. Detecting shoot beetle damage on Yunnan pine using Landsat time-series data[J/OL]. Forests, 2018, 9: 39 [2021−01−19]. https://doi.org/10.3390/f9010039.
|
[97] |
Gašparović M, Jurjević L. Gimbal influence on the stability of exterior orientation parameters of UAV acquired images[J/OL]. Sensors, 2017, 17(2): 401 [2021−01−15]. https://doi.org/10.3390/s17020401.
|
[98] |
Näsi R, Honkavaara E, Paivi L, et al. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level[J]. Remote Sensing, 2015, 7: 15467−15493. doi: 10.3390/rs71115467
|
[99] |
Yu R, Luo Y Q, Zhou Q, et al. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level[J/OL]. International Journal of Applied Earth Observation and Geoinformation, 2021, 101(1): 102363 [2021−01−21]. https://doi.org/10.1016/j.jag.2021.102363.
|
[100] |
鲁芮伶, 杜莹, 晏黎明, 等. 森林树木死亡的判定方法及其应用综述[J]. 科学通报, 2019, 64(23):2395−2409.
Lu R L, Du Y, Yan L M, et al. A review of forest tree death determination methods and their application[J]. Scientific Bulletin, 2019, 64(23): 2395−2409.
|
[101] |
Parker J, Patton R. Effects of drought and defoliation on some metabolites in roots of black oak seedlings[J]. Canadian Journal of Forest Research, 1975, 5: 457−463. doi: 10.1139/x75-063
|
[102] |
Hartmann H, Ziegler W, Trumbore S. Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy[J]. Functional Ecology, 2013, 27: 413−427. doi: 10.1111/1365-2435.12046
|
[103] |
Adams H, Zeppel M, Anderegg W, et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality[J]. Nature Ecology and Evolution, 2017, 1: 1285−1291. doi: 10.1038/s41559-017-0248-x
|
[104] |
周国逸, 李琳, 吴安驰. 气候变暖下干旱对森林生态系统的影响[J]. 南京信息工程大学学报(自然科学版), 2020, 12(1):81−88.
Zhou G Y, Li L, Wu A C. Effect of drought on forest ecosystem under warming climate[J]. Journal of Nanjing University of Information Technology (Nature Science Edition), 2020, 12(1): 81−88.
|
[105] |
Bowman W. The relationship between leaf water status, gas exchange, and spectral reflectance in cotton leaves[J]. Remote Sensing of Environment, 1989, 30(3): 249−255. doi: 10.1016/0034-4257(89)90066-7
|
[106] |
郝增超, 侯爱中, 张璇, 等. 干旱监测与预报研究进展与展望[J]. 水利水电技术, 2020, 51(11):30−40.
Hao Z C, Hou A Z, Zhang X, et al. Study progresses and prospects of drought monitoring and prediction[J]. Water Conservancy and Hydropower Technology, 2020, 51(11): 30−40.
|
[107] |
周磊, 武建军, 张洁. 以遥感为基础的干旱监测方法研究进展[J]. 地理科学, 2015, 35(5):630−636.
Zhou L, Wu J J, Zhang J. Remote sensing-based drought monitoring approach and research progress[J]. Scientia Geographica Sinica, 2015, 35(5): 630−636.
|
[108] |
Li X, Xiao J, He B. Higher absorbed solar radiation partly offset the negative effects of water stress on the photosynthesis of Amazon forests during the 2015 drought[J/OL]. Environmental Research Letters, 2018, 13(4): 044005 [2020−10−12]. https://iopscience.iop.org/article/10.1088/1748-9326/aab0b1.
|
[109] |
Reddy A, Chaitanya K, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology, 2004, 161(11): 1189−1202. doi: 10.1016/j.jplph.2004.01.013
|
[110] |
Lambers H, Chapin F, Chapin F, et al. Plant water relations in plant physiological ecology[M]. New York: Springer, 2008: 163−217.
|
[111] |
Breshears D, Cobb N, Rich P, et al. Regional vegetation die-off in response to global change-type drought[J]. PNAS, 2005, 102(42): 15144−15148. doi: 10.1073/pnas.0505734102
|
[112] |
Running S, Nemani R, Heinsch F, et al. A continuous satellite-derived measure of global terrestrial primary production[J]. Bioscience, 2004, 54(6): 547−560. doi: 10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
|
[113] |
Huang C, Asner G, Barger N, et al. Regional aboveground live carbon losses due to drought-induced tree dieback in Pinyon-Juniper ecosystems[J]. Remote Sensing of Environment, 2010, 114(7): 1471−1479. doi: 10.1016/j.rse.2010.02.003
|
[114] |
Clifford M, Cobb N, Buenemann M. Long-term tree cover dynamics in a Pinyon-Juniper woodland: climate-change-type drought resets successional clock[J]. Ecosystems, 2011, 14(6): 949−962. doi: 10.1007/s10021-011-9458-2
|
[115] |
Suárez L, Zarco-Tejada P, Sepulcre-Cantó G, et al. Assessing canopy PRI for water stress detection with diurnal airborne imagery[J]. Remote Sensing of Environment, 2008, 112(2): 560−575. doi: 10.1016/j.rse.2007.05.009
|
[116] |
黄华国. 森林病虫害定量遥感模型进展[C]//第一届植被病虫害遥感大会. 北京: 中国科学院空天信息创新研究院, 2020.
Huang H G. Advances in quantitative remote sensing models of forest diseases and insect pests[C]//The first congress on remote sensing of plant diseases and insect pests. Beijing: Aerospace Information Research Institute, Chinese Academy of Sciences, 2020.
|
[117] |
李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148−166.
Li S T, Li C Y, Kang X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1): 148−166.
|
[118] |
武士翔. “科技蓝 + 森林绿”助力雄安生态格局: 基于雄安新区植树造林项目的研究[J]. 城市建筑, 2019, 16(26):149−150. doi: 10.3969/j.issn.1673-0232.2019.26.049
Wu S X. “Science and technology blue + forest green” helps Xiong’an ecological pattern based on the afforestation project in Xiong’an new district[J]. Urban Architecture, 2019, 16(26): 149−150. doi: 10.3969/j.issn.1673-0232.2019.26.049
|
[119] |
Gorelick N, Hancher M, Dixon M, et al. Google earth engine: planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18−27. doi: 10.1016/j.rse.2017.06.031
|
[1] | Feng Xuejing, Ma Ling, Yang Shuang, Bo Wenhao, Chen Xuexun, Pang Xiaoming. Construction of genetic transformation system of ‘Jingzao 39’ callus[J]. Journal of Beijing Forestry University, 2024, 46(10): 74-80. DOI: 10.12171/j.1000-1522.20240055 |
[2] | Jiang Shuaifei, Cui Ying, Zhao Ruirui, Qi Shuaizheng, Kong Lisheng, Zhao Jian, Li Shanshan, Zhang Jinfeng. Agrobacterium tumefaciens-mediated transformation of hybrid sweetgum embryogenic callus[J]. Journal of Beijing Forestry University, 2021, 43(8): 9-17. DOI: 10.12171/j.1000-1522.20210032 |
[3] | Cheng Jiali, Ma Jiang, Xiao Aihua, Zhu Zhonglong, Sang Ziyang, Ma Lüyi. Extraction, antioxidant and antibacterial activities of essential oils from Magnolia wufengensis[J]. Journal of Beijing Forestry University, 2020, 42(2): 96-105. DOI: 10.12171/j.1000-1522.20190249 |
[4] | Deng Wenhong, Zhao Xinrui, Zhang Junqi, Guo Huihong. Determination of plant hormones in plant tissues by UPLC-MS/MS[J]. Journal of Beijing Forestry University, 2019, 41(8): 154-160. DOI: 10.13332/j.1000-1522.20190052 |
[5] | LI Ran, QI Qi, LI Yun, CHEN Xue-mei, GAI Ying. A method of HPLC-MS/MS to determine chlorogenic acid and other three kinds of active components in Eucommia ulmoids[J]. Journal of Beijing Forestry University, 2016, 38(6): 123-129. DOI: 10.13332/j.1000-1522.20160105 |
[6] | LUO Shu-qin, ZHANG Xiang, ZHANG Ming, ZHANG Li-ping. Chemical composition of extracts from Larix gmelinii bark extracted by SFE-CO2[J]. Journal of Beijing Forestry University, 2014, 36(5): 142-145. DOI: 10.13332/j.cnki.jbfu.2014.05.003 |
[7] | LI Yan, ZHAO De-gang. Ipt gene promoting shoot regeneration in genetic transformation of Eucommia ulmoides Oliv[J]. Journal of Beijing Forestry University, 2011, 33(6): 90-93. |
[8] | LI Jin-ke, CHEN Hua-jun, CHEN Shao-liang. Quantitative analysis of jasmonic acids, indole-3-acetic acid and abscisic acid in plant tissues by GC-MS[J]. Journal of Beijing Forestry University, 2010, 32(5): 143-148. |
[9] | YU Lai, AN Xin-min, CAO Guan-lin, CHEN Zhong, ZHANG Zhi-yi. Genetic transformation of Populus tomentosa Carr. with sterility construct of PtAP3[J]. Journal of Beijing Forestry University, 2010, 32(5): 15-20. |
[10] | LI Hui, CHEN Xiao-yang, LI Yun, LI Wei, DING Xia. Optimization of antibiotic concentration in genetic transformation of Populus alba[J]. Journal of Beijing Forestry University, 2005, 27(5): 118-121. |