• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Fengchen, Tian Na, Cheng Xiaoqin. Releasing variation and bacteriostatic effects of botanic volatile organic compounds from Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2022, 44(9): 72-82. DOI: 10.12171/j.1000-1522.20210125
Citation: Liu Fengchen, Tian Na, Cheng Xiaoqin. Releasing variation and bacteriostatic effects of botanic volatile organic compounds from Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2022, 44(9): 72-82. DOI: 10.12171/j.1000-1522.20210125

Releasing variation and bacteriostatic effects of botanic volatile organic compounds from Pinus tabuliformis

More Information
  • Received Date: March 31, 2021
  • Revised Date: August 22, 2021
  • Available Online: September 13, 2022
  • Published Date: September 24, 2022
  •   Objective  Some components of botanic volatile organic compounds (BVOCs) have the ecological functions of bacteriostasis, disease elimination and health care. In this paper, the composition and dynamic of BVOCs in leaves of Pinus tabuliformis in summer and autumn were studied, as well as their inhibitory effects on air microorganisms, which provided scientific basis for the selection and application of plants for health rehabilitation and recreation in forest (HRRF).
      Method  The BVOCs in P. tabuliformis leaves were collected and analyzed by dynamic headspace adsorption method and thermal desorption system gas chromatography/mass spectrometer (TDS-GC-MS) technique. The bacteriostatic rate of BVOCs in P. tabuliformis leaves was calculated through the control experiment of air microbial content determination in urban microbial collection point and P. tabuliformis forest sample plots.
      Result  (1) A total of 173 compounds of 11 classes were detected in the BVOCs released from P. tabuliformis leaves. There were 113 compounds of 11 classes detected in summer and 103 compounds of 11 classes detected in autumn. The main components were alkanes and olefins, with the maximum content over 70% in summer and over 90% in autumn. The BVOCs released from P. tabuliformis leaves in summer were more abundant than that in autumn. Meanwhile, the total amount of BVOCs in summer was higher than that in autumn. However, the peak of release in summer was later than in autumn. (2) Among the environmental factors, there was no significantly positive correlation between atmospheric temperature and the release of BVOCs from P. tabuliformis, while there was no significant negative correlation between atmospheric humidity and the release of BVOCs from P. tabuliformis. (3) The release of BVOCs from leaves of P. tabuliformis showed a diurnal trend of “one peak and one valley” with peaks of BVOCs released in summer and autumn at 14:00 and 12:00, respectively. More antibacterial substances were released in summer than in autumn.The inhibitory effect of P. tabuliformis on air microorganisms had obvious diurnal variation, and the most significant inhibitory effect was on bacteria, and the inhibition rate was morning > noon > evening. (4) Considering the beneficial and harmful effects of BVOCs on the human body, the relative content of healthy ingredients in BVOCs from P. tabuliformis leaves reached the highest value at 16:00 in summer, while the relative content of harmful compounds reached the lowest value. In autumn, from 14:00 to 16:00, the relative content of components beneficial to human health in the BVOCs of P. tabuliformis leaves increased while the relative content of harmful compounds decreased. Moreover, the relative content of antibacterial compounds reached the peak at about 16:00, and the relative content of harmful compounds was close to zero.
      Conclusion  There are significant variations in the composition and relative content of BVOCs released from leaves of P. tabuliformis at different time of day and in different seasons of the year (summer and autumn). The BVOCs from P. tabuliformis leaves had obvious inhibitory effect on inhibiting bacteria in the air and improving air quality. From 14:00 to 16:00 in summer and autumn, there are more beneficial compounds and fewer harmful compounds in P. tabuliformis forest. The results provide theoretical basis for further revealing the physiological response mechanism of BVOCs released by P. tabuliformis to regulate human health.
  • [1]
    Ronald B. Secondary metabolites play primary roles in human affairs[J]. Perspectives in Biology and Medicine, 1997, 40: 197−221. doi: 10.1353/pbm.1997.0002
    [2]
    Kim J C, Kim K J, Kim D S, et al. Seasonal variations of monoterpene emissions from coniferous trees of different ages in Korea[J]. Chemosphere, 2005, 59(11): 1685−1696. doi: 10.1016/j.chemosphere.2004.10.048
    [3]
    陈欢, 章家恩. 植物精气研究进展[J]. 生态科学, 2007, 26(3): 281−287. doi: 10.3969/j.issn.1008-8873.2007.03.016

    Chen H, Zhang J E. Advances in the study of phytoncidere[J]. Ecological Science, 2007, 26(3): 281−287. doi: 10.3969/j.issn.1008-8873.2007.03.016
    [4]
    李洪远, 王芳, 熊善高, 等. 植物挥发性有机物的作用与释放影响因素研究进展[J]. 安全与环境学报, 2015, 15(2): 292−296. doi: 10.13637/j.issn.1009-6094.2015.02.060

    Li H Y, Wang F, Xiong S G, et al. Research review on the role and the influential factors of the biogenic volatile organic compounds[J]. Journal of Safety and Environment, 2015, 15(2): 292−296. doi: 10.13637/j.issn.1009-6094.2015.02.060
    [5]
    贾梅, 金荷仙, 王声菲. 园林植物挥发物及其在康复景观中对人体健康影响的研究进展[J]. 中国园林, 2016, 32(12): 26−31. doi: 10.3969/j.issn.1000-6664.2016.12.006

    Jia M, Jin H X, Wang S F. On the progress of research of landscape plant volatile compounds and their influence on human health in rehabilitation landscape[J]. Chinese Landscape Architecture, 2016, 32(12): 26−31. doi: 10.3969/j.issn.1000-6664.2016.12.006
    [6]
    文野, 潘洋刘, 晏琪, 等. 森林挥发物保健功能研究进展[J]. 世界林业研究, 2017, 30(6): 19−23.

    Wen Y, Pan Y L, Yan Q, et al. Research development in healthcare function of BVOCs[J]. World Forestry Research, 2017, 30(6): 19−23.
    [7]
    谢小洋, 冯永忠, 王得祥, 等. 我国西北地区夏季油松挥发物成分日变化及其影响因子研究[J]. 西北农林科技大学学报(自然科学版), 2016, 44(8): 111−118.

    Xie X Y, Feng Y Z, Wang D X, et al. Diurnal variation and influencing factors of volatile organic compounds from Pinus tabuliformis in summer in northwest area of China[J]. Journal of Northwest A&F University (Natural Science Edition), 2016, 44(8): 111−118.
    [8]
    邱新彩, 彭道黎, 李伟丽, 等. 北京延庆区不同林龄油松人工林土壤理化性质[J]. 应用与环境生物学报, 2018, 24(2): 221−229. doi: 10.19675/j.cnki.1006-687x.2017.05012

    Qiu X C, Peng D L, Li W L, et al. Soil physicochemical properties of Pinus tabuliformis plantations of different ages in Yanqing, Beijing[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 221−229. doi: 10.19675/j.cnki.1006-687x.2017.05012
    [9]
    段劼, 马履一, 贾黎明, 等. 北京地区油松人工林树冠竞争因子的测算与分析[J]. 东北林业大学学报, 2012, 40(3): 14−18. doi: 10.3969/j.issn.1000-5382.2012.03.005

    Duan J, Ma L Y, Jia L M, et al. Analysis and calculation of crown competition factor in Pinus tabulaefomis plantations in Beijing[J]. Journal of Northeast Forestry University, 2012, 40(3): 14−18. doi: 10.3969/j.issn.1000-5382.2012.03.005
    [10]
    任真. 油松挥发物及其功能研究进展[J]. 中国园艺文摘, 2014, 30(6): 96−97. doi: 10.3969/j.issn.1672-0873.2014.06.044

    Ren Z. Perspective of VOCs emission and its functions in Pinus tabuliformis[J]. Chinese Horticelture Abstracts, 2014, 30(6): 96−97. doi: 10.3969/j.issn.1672-0873.2014.06.044
    [11]
    郭秀艳. 臭柏、油松精油的提取与抑菌活性[D]. 呼和浩特: 内蒙古农业大学, 2009.

    Guo X Y. The extraction and antibacterial affect of Sabina vulgaris Ant. and Pinus tabuliformis Carr.[D]. Hohhot: Inner Mongolia Agricultural University, 2009.
    [12]
    Peñuelas J, Llusià J. Plant VOC emissions: making use of the unavoidable[J]. Trends in Ecology and Evolution, 2004, 19(8): 402−404. doi: 10.1016/j.tree.2004.06.002
    [13]
    Dixon R A. Natural products and plant disease resistance[J]. Nature, 2001, 411: 843−847. doi: 10.1038/35081178
    [14]
    吴传万, 杜小凤, 徐建明, 等. 植物源抑菌活性成分研究新进展[J]. 西北农业学报, 2004, 13(3): 81−88. doi: 10.3969/j.issn.1004-1389.2004.03.022

    Wu C W, Du X F, Xu J M, et al. Research advances in natural antibacterial constituents from plant origin[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2004, 13(3): 81−88. doi: 10.3969/j.issn.1004-1389.2004.03.022
    [15]
    姚雷, 张少艾. 芳香植物[M]. 上海: 上海教育出版社, 2002.

    Yao L, Zhang S A. Aromatic plant[M]. Shanghai: Shanghai Educational Publishing House, 2002.
    [16]
    刘雪, 何英兰, 胡月英, 等. 3-蒈烯对铜绿假单胞菌的抑菌活性及机理初探[J]. 热带作物学报, 2019, 40(3): 601−608. doi: 10.3969/j.issn.1000-2561.2019.03.027

    Liu X, He Y L, Hu Y Y, et al. Primary antibacterial activity and mechanism of 3-carene against the Pseudomonas aeruginosa[J]. Chinese Journal of Tropical Crops, 2019, 40(3): 601−608. doi: 10.3969/j.issn.1000-2561.2019.03.027
    [17]
    Labib R M, Youssef F S, Ashour M L, et al. Chemical composition of Pinus roxburghii bark volatile oil and validation of its anti-inflammatory activity using molecular modelling and bleomycin-induced inflammation in albino mice[J]. Molecules, 2017, 22(9): 1384. doi: 10.3390/molecules22091384
    [18]
    舒慧珍, 唐志凌, 韩薇, 等. 石竹烯对热杀索丝菌的抑菌机理[J]. 食品科学, 2020, 41(15): 31−38. doi: 10.7506/spkx1002-6630-20190725-334

    Shu H Z, Tang Z L, Han W, et al. Antibacterial activity and mechanism of caryophyllene against Brochothrix thermosphacta[J]. Food Science, 2020, 41(15): 31−38. doi: 10.7506/spkx1002-6630-20190725-334
    [19]
    凌玮玮. 牡荆化学成分及其抑菌活性研究[D]. 合肥: 安徽农业大学, 2010.

    Ling W W. Constituents and antibacterial activities of Vitex negundo Linn. var. cannabifolia[D]. Hefei: Anhui Agricultural University, 2010.
    [20]
    李娟. 侧柏和油松挥发物动态变化规律研究[D]. 北京: 中国林业科学研究院, 2009.

    Li J. The VOCs emittion of two tree species of Platycladus orientalis and Pinus tabuliformis in urban environment[D]. Beijing: Chinese Academy of Forestry, 2009.
    [21]
    戴向荣, 蒋立科, 罗曼. 肉桂醛抑制黄曲霉机理初探[J]. 食品科学, 2008, 29(1): 36−40. doi: 10.3321/j.issn:1002-6630.2008.01.002

    Dai X R, Jiang L K, Luo M. Preliminary study of cinnamaldehyde inhibition on aspergillus flavous[J]. Food Science, 2008, 29(1): 36−40. doi: 10.3321/j.issn:1002-6630.2008.01.002
    [22]
    林富平, 周帅, 马楠, 等. 4个桂花品种叶片挥发物成分及其对空气微生物的影响[J]. 浙江农林大学学报, 2013, 30(1): 15−21. doi: 10.11833/j.issn.2095-0756.2013.01.003

    Lin F P, Zhou S, Ma N, et al. Volatile organic compounds in leaves of Osmanthus fragrans and their effect on airborne microorganisms[J]. Journal of Zhejiang A&F University, 2013, 30(1): 15−21. doi: 10.11833/j.issn.2095-0756.2013.01.003
    [23]
    Nguyen V C, Tadao K, Hiromichi K, et al. Antimicrobial activity of Kumazasa (Sasa albo-marginata)[J]. Agricultural and Biological Chemistry, 1982, 46(4): 971−978.
    [24]
    张薇, 程政红, 刘云国, 等. 植物挥发性物质成分分析及抑菌作用研究[J]. 生态环境, 2007, 16(5): 1455−1459.

    Zhang W, Cheng Z H, Liu Y G, et al. The bactericidal and aromatic substance of volatile gas of the plant[J]. Ecology and Environment, 2007, 16(5): 1455−1459.
    [25]
    Joung D, Song C, Ikei H, et al. Physiological and psychological effects of olfactory stimulation with D-limo-nene[J]. Advances in Horticultural Science, 2015, 28(2): 90−94.
    [26]
    周世宁, 陈维田, Burnett J, 等. 空调室内环境的气传微生物[J]. 环境科学学报, 1997, 17(4): 498−501.

    Zhou S N, Chen W T, Burnett J, et al. A study of microorganisms in air-conditioned indoor environment[J]. Acta Scientiae Circumstantiae, 1997, 17(4): 498−501.
    [27]
    王成, 郄光发, 董建华, 等. 侧柏、香樟枝叶挥发物对人体生理的影响[J]. 城市环境与城市生态, 2010, 23(3): 30−37.

    Wang C, Qie G F, Dong J H, et al. Effect of VOCs from branch and leaf of Platycladus orientalis and Cinnamomum camphora on human physiology[J]. Urban Environment & Urban Ecology, 2010, 23(3): 30−37.
    [28]
    王小婧. 北京市主要风景游憩林两种保健资源及其作用初探[D]. 北京: 北京林业大学, 2008.

    Wang X J. Primary study on the two healthcare resources and their function of the main scenic & recreational forests in Beijing[D]. Beijing: Beijing Forestry University, 2008.
    [29]
    高岩. 北京市绿化树木挥发性有机物释放动态及其对人体健康的影响[D]. 北京: 北京林业大学, 2005.

    Gao Y. Releasing variation and effects on human health of volatile organic compounds from landscape trees in Beijing[D]. Beijing: Beijing Forestry University, 2005.
    [30]
    郭高轩, 刘久荣, 许亮, 等. 近300年来北京地区降水的变化特征[J]. 水资源与水工程学报, 2011, 22(1): 90−93.

    Guo G X, Liu J R, Xu L, et al. Change characteristics of precipitation in Beijing region from 1724 to 2009[J]. Journal of Water Resources and Water Engineering, 2011, 22(1): 90−93.
    [31]
    陆蓓蓓, 黄发源, 单晓梅, 等. 合肥市水源与饮用水中挥发性卤代烃健康风险评价[J]. 中国预防医学杂志, 2013, 14(4): 260−264.

    Lu B B, Huang F Y, Shan X M, et al. Health risk assessment of volatile chlorinated hydrocarbons in drinking water in Hefei[J]. Chinese Preventive Medicine, 2013, 14(4): 260−264.
    [32]
    李雷, 李红, 王学中, 等. 广州市中心城区环境空气中挥发性有机物的污染特征与健康风险评价[J]. 环境科学, 2013, 34(12): 4558−4564.

    Li L, Li H, Wang X Z, et al. Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China[J]. Environmental Science, 2013, 34(12): 4558−4564.
    [33]
    郑义. 黑皮油松、白桦挥发物及其抑菌作用研究[D]. 哈尔滨: 东北林业大学, 2008.

    Zheng Y. Antibitic functions and volatile organic compounds from Pinus tabuliformis var. mukdensis Uyeki and Betula platyphlla Suk. [D]. Harbin: Northeast Forestry University, 2008.
    [34]
    谢小洋. 西安市主要绿化树种VOCs组成及释放规律研究[D]. 杨凌: 西北农林科技大学, 2016.

    Xie X Y. Research on composition and release regularities of VOCs from main landscape plants in Xi’an[D]. Yangling: Northwest A&F University, 2016.
    [35]
    赵美萍, 邵敏, 白郁华, 等. 我国几种典型树种非甲烷烃类的排放特征[J]. 环境化学, 1996, 15(1): 69−75.

    Zhao M P, Shao M, Bai Y H, et al. Study on NMHC emission characteristics of several typical trees in China[J]. Environmental Chemistry, 1996, 15(1): 69−75.
    [36]
    李柏青, 吴楚材, 吴章文. 中国森林公园的发展方向[J]. 生态学报, 2009, 29(5): 2749−2756. doi: 10.3321/j.issn:1000-0933.2009.05.068

    Li B Q, Wu C C, Wu Z W. The development roadmap analysis on China’s forest parks[J]. Acta Ecologica Sinica, 2009, 29(5): 2749−2756. doi: 10.3321/j.issn:1000-0933.2009.05.068
  • Related Articles

    [1]Jin Jing, Yang Guochao, Zhang Fan. Preparation of nano-silver/mesoporous silica composite materials and its antibacterial properties[J]. Journal of Beijing Forestry University, 2024, 46(6): 145-153. DOI: 10.12171/j.1000-1522.20230372
    [2]Shi Jinyong, Duan Wenbiao, Chen Lixin, Qu Meixue, Wang Yafei, Yang Yongchao, Mu Miaoxian, Zhu Shuaiwei. Morphological characteristics of mound-pit complexes by uprooted trees and its relationship with DBH in natural forest in the south of Xiaoxing’anling Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(12): 61-71. DOI: 10.12171/j.1000-1522.20210499
    [3]Jin Zhi, Zeng Zhen, Zhao Guangjie. Microcrystalline structure evolution and pore structure formation of liquefied Chinese fir carbon fibers during different carbonization-activation processes[J]. Journal of Beijing Forestry University, 2022, 44(4): 138-146. DOI: 10.12171/j.1000-1522.20220043
    [4]Luo Haifeng, Tan Yuesheng. Research on an under actuated dual separation plate harvestor[J]. Journal of Beijing Forestry University, 2018, 40(12): 110-116. DOI: 10.13332/j.1000-1522.20180374
    [5]Liu Pengpeng, Zhou Sukun, Wang Chao, You Tingting, Xu Feng. Preparation and properties of mesoporous activated carbons from NaOH-pretreated corncob residues[J]. Journal of Beijing Forestry University, 2018, 40(3): 128-134. DOI: 10.13332/j.1000-1522.20170431
    [6]LU Lei, ZHAO Min, ZHAO Li-yan, LIANG Shu-cheng, LI Tai-lun, DU Mei-hui. Purification, characterization and dye decolorization of a recombinant Pycnoporus sanguineus laccase[J]. Journal of Beijing Forestry University, 2010, 32(6): 125-129.
    [7]HU Xiao-dan, , ZHANG De-quan, SUN Ai-dong. Purification of anthocyanins from perilla leaves with macroporous adsorbing resins[J]. Journal of Beijing Forestry University, 2008, 30(4): 34-38.
    [8]YIN Ya-fang, Nagao Hirofumi, Kato Hideo, Ido Hirofumi. Application of a laser measurement method in measuring the modulus of elasticity in tension parallel to grain of Cryptomeria japonica D.Don structural lumber[J]. Journal of Beijing Forestry University, 2007, 29(6): 172-175. DOI: 10.13332/j.1000-1522.2007.06.037
    [9]TANG Jin-nian, XU Xian-ying, JIN Hong-xi, ZHANG Dun-ming. Shape characteristics of the natural aeolian sand ripples and their relations with the physical characteristics of surface sand[J]. Journal of Beijing Forestry University, 2007, 29(2): 111-115.
    [10]SONG Xiao-shuang, ZHAO Min, LIU Gui-feng, WANG Yu-cheng, YANG Qian. Cloning and sequence analysis of laccase gene fragments from Climacocystis borealis[J]. Journal of Beijing Forestry University, 2005, 27(5): 59-64.
  • Cited by

    Periodical cited type(8)

    1. 袁然,梁映红,傅童成,胡生龙,汪盛,易自力,李蒙. 南荻水热液化耦合酶解联产多种纤维糖. 中国造纸. 2024(11): 71-80 .
    2. 张婷,孙德娇,王彩衣,黄鑫,陈少强,黎飞望,杨齐. 甘蔗渣制备低聚木糖的工艺优化. 广西科学. 2023(04): 727-734 .
    3. 童欣怡,李琦,陈文倩,赵林果. 杨木屑木聚糖碱法提取及其制备低聚木糖的工艺研究. 林业工程学报. 2020(01): 61-68 .
    4. 朱增科,平清伟,张健,盛雪茹,李娜,石海强. 乙醇-水抽提法分离毛竹枝桠材组分的研究. 中国造纸. 2020(08): 52-56 .
    5. 张威伟,张波,张乐平,蒋建新. 非酶法催化木质纤维原料转化制备低聚木糖研究进展. 林产化学与工业. 2020(06): 118-128 .
    6. 邓元元,胡超,陈思宇,朱文娟,王刚,兰时乐. 啤酒糟制备低聚木糖功能饲料添加剂酶解条件优化. 中国饲料. 2019(09): 54-62 .
    7. 陈冰炜,阚玉娜,袁诚,王新洲,黄曹兴,梅长彤,翟胜丞. 乙醇预处理对芦竹细胞壁的影响及荧光可视化分析. 林业工程学报. 2019(04): 59-65 .
    8. 刘洋,胡小文,姚艳丽. NaOH预处理对甘蔗渣成分和酶解效率的影响. 甘蔗糖业. 2019(06): 28-38 .

    Other cited types(4)

Catalog

    Article views (545) PDF downloads (91) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return