• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhu Rui, Jiao Jipeng, Sun Huimin, Wu Haiwei, Tao Jing. Homology modeling of the odorant binding protein TjapOBP1 of Thecodiplosis japonensis and screening of active odorant molecules[J]. Journal of Beijing Forestry University, 2021, 43(9): 77-86. DOI: 10.12171/j.1000-1522.20210188
Citation: Zhu Rui, Jiao Jipeng, Sun Huimin, Wu Haiwei, Tao Jing. Homology modeling of the odorant binding protein TjapOBP1 of Thecodiplosis japonensis and screening of active odorant molecules[J]. Journal of Beijing Forestry University, 2021, 43(9): 77-86. DOI: 10.12171/j.1000-1522.20210188

Homology modeling of the odorant binding protein TjapOBP1 of Thecodiplosis japonensis and screening of active odorant molecules

More Information
  • Received Date: May 16, 2021
  • Revised Date: June 18, 2021
  • Available Online: July 01, 2021
  • Published Date: October 14, 2021
  •   Objective  Thecodiplosis japonensis is a newly discovered forest pest invading China in recent years. It has caused a large area of the weakening and dying of the coastal shelter forest of Pinus thunbergii in Huangdao District, Qingdao City, Shandong Province of eastern China. As a new invasive species, basic research on the prevention and control of Thecodiplosis japonensis is extremely weak. In order to develop effective prevention and control technologies to contain the serious harm of Thecodiplosis japonensis as soon as possible and avoid further spread, this paper starts from the host identification mechanism, so as to develop targeted attractants for monitoring and killing.
      Method  In this study, the sequence of the odorant binding protein TjapOBP1 was screened from the antennal transcriptome data of Thecodiplosis japonensis, and the 3D structure model of the protein was obtained by homology modeling. We evaluated the reliability of the model with Procheck, Verify_3D and ERRAT. TjapOBP1 was docked with 67 ligand molecules measured in the volatiles of Pinus thunbergii by AutoDock software.
      Result  Procheck analysis showed that 95.5% of the amino acids of TjapOBP1 fell in the optimal reasonable region. Verify_3D analysis showed that 83.3% of the amino acid score was greater than 0.2. The ERRAT values of TjapOBP1 were 73.2%. To sum up, the modeling results had high reliability. Molecular docking results showed that β-Myrcene had the best binding effect with TjapOBP1, and the binding energy was −5.26. In addition, the binding energies of 2,6-dimethylocta-1,5,7-trien-3-ol, neryl acetate, sabinene, lavandulyl acetate and 1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene with TjapOBP1 increased successively, but were all below −5.0. All these 6 chemicals may be the odors that can be recognized and bound by TjapOBP1.
      Conclusion  The establishment of 3D structural model laid a foundation for further study of the function of OBP in Thecodiplosis japonensis. Molecular docking screened the host volatiles that may bind specifically to this OBP, thus providing support for the development of attractants.
  • [1]
    Toichi U, Motonori I. Eine neue Thecodiplosis-Art (Dip., Itonididae)[J]. Insecta Matsumurana, 1955, 19(1−2): 44−50.
    [2]
    焦继鹏, 武海卫, 任利利, 等. 入侵种松针鞘瘿蚊在山东省黄岛区的发现与初步研究[J]. 应用昆虫学报, 2017, 54(6):915−923.

    Jiao J P, Wu H W, Ren L L, et al. Reports on the discovery and preliminary studies of the invasive species Thecodiplosis japonensis (Uchida & Inouye) in Huangdao area of Shandong Province[J]. Chinese Journal of Applied Entomology, 2017, 54(6): 915−923.
    [3]
    Ko J H, Lee B Y. Influence of the wind on the dispersion of the pine gall-midge (Thecodiplosis japonensis)-tested in the wind tunnel[J]. Korean Journal of Entomology, 1975, 5(1): 13−16.
    [4]
    Brito N F, Moreira M F, Melo A C. A look inside odorant-binding proteins in insect chemoreception[J]. Journal of Insect Physiology, 2016, 95: 51−65. doi: 10.1016/j.jinsphys.2016.09.008
    [5]
    Pelosi P, Mastrogiacomo R, Iovinella I, et al. Structure and biotechnological applications of odorant-binding proteins[J]. Applied Microbiology and Biotechnology, 2014, 98(1): 61−70. doi: 10.1007/s00253-013-5383-y
    [6]
    杜亚丽, 徐凯, 赵慧婷, 等. 昆虫气味结合蛋白的研究进展[J]. 昆虫学报, 2020, 63(3):365−380.

    Du Y L, Xu K, Zhao H T, et al. Research progress in odorant binding proteins of insects[J]. Acta Entomologica Sinica, 2020, 63(3): 365−380.
    [7]
    Zheng W M. Proteins: from sequence to structure[J]. Chinese Physics B, 2014, 23(7): 111−117.
    [8]
    刘航玮. 绿盲蝽四个触角特异气味结合蛋白配体结合特征研究[D]. 北京: 中国农业科学院, 2017.

    Liu H W. Binding Characteristics of four antennal-specific odorant binding proteins in Apolygus lucorum (Hemiptera: Miridae)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017.
    [9]
    刘子楠, 黎河山, 宋枭禹. 蛋白质结构预测综述[J]. 中国医学物理学杂志, 2020, 37(9):1203−1207. doi: 10.3969/j.issn.1005-202X.2020.09.023

    Liu Z N, Li H S, Song X Y. Survey on protein structure predication[J]. Chinese Journal of Medical Physics, 2020, 37(9): 1203−1207. doi: 10.3969/j.issn.1005-202X.2020.09.023
    [10]
    李敏, 郭美琪, 相伟芳, 等. 分子对接技术在昆虫化学感受研究中的应用进展[J]. 植物保护, 2019, 45(5):121−127.

    Li M, Guo M Q, Xiang W F, et al. Research progress in molecular docking in insect chemosense[J]. Plant Protection, 2019, 45(5): 121−127.
    [11]
    Laskowski R A, MacArthur M W, Moss D S, et al. Procheck: a program to check the stereochemical quality of protein structures[J]. Journal of Applied Crystallography, 1993, 26(2): 283−291. doi: 10.1107/S0021889892009944
    [12]
    Laskowski R A, Rullmannn J A, mac Arthur M W, et al. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR[J]. Journal of Biomolecular NMR, 1996, 8(4): 477−486.
    [13]
    Eisenberg D, Luthy R, Bowie J U. VERIFY3D: assessment of protein models with three-dimensional profiles[J]. Methods in Enzymology, 1997, 277: 396−404.
    [14]
    汪宇, 孙浩, 朱家颖, 等. 云南切梢小蠹气味结合蛋白的同源模建[J]. 应用昆虫学报, 2015, 52(5):1223−1228. doi: 10.7679/j.issn.2095-1353.2015.145

    Wang Y, Sun H, Zhu J Y, et al. Homology modeling of the odorant binding protein of the pine shoot beetle, Tomicus yunnanensis[J]. Chinese Journal of Applied Entomology, 2015, 52(5): 1223−1228. doi: 10.7679/j.issn.2095-1353.2015.145
    [15]
    阎伟, 骆有庆, 李朝绪, 等. 锈色棕榈象气味结合蛋白的同源建模[J]. 应用昆虫学报, 2017, 54(6):909−914.

    Yan W, Luo Y Q, Li C X, et al. Modeling the odorant binding protein of the red palm weevil, Rhynchophorus ferrugineus[J]. Chinese Journal of Applied Entomology, 2017, 54(6): 909−914.
    [16]
    相伟芳, 李敏, 林艳平, 等. 白蛾周氏啮小蜂气味结合蛋白OBP1与寄主挥发物的分子对接研究[J]. 生物安全学报, 2018, 27(30):193−199.

    Xiang W F, Li M, Lin Y P, et al. Molecular docking of odorant binding protein1 of Chouioia cunea with host volatiles[J]. Journal of Biosafety, 2018, 27(30): 193−199.
    [17]
    郭冰, 郝恩华, 王菁桢, 等. 入侵害虫松树蜂气味结合蛋白与其相关信息化学物质的分子对接[J]. 植物保护学报, 2019, 46(5):1004−1017.

    Guo B, Hao E H, Wang J Z, et al. Molecular docking of odorant binding proteins and its related semiochemicals of sirex woodwasp Sirex noctilio, an invasive insect pest[J]. Journal of Plant Protection, 2019, 46(5): 1004−1017.
    [18]
    Baker D, Sali A. Protein structure prediction and structural genomics[J]. Science, 2001, 294: 93−96. doi: 10.1126/science.1065659
  • Related Articles

    [1]Chen Beibei, Jiang Jun, Lu Yuanchang, Liu Xianzhao, Jia Hongyan, Ming Angang, Zhang Xianqiang. Effects of thinning intensity on the growth of interplanting broadleaved trees under Pinus massoniana plantation[J]. Journal of Beijing Forestry University, 2021, 43(1): 58-65. DOI: 10.12171/j.1000-1522.20200086
    [2]Zhang Xiaoyan, Li Yufei, Liu Guihua, Xu Zaoshi, Deng Bo. Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus[J]. Journal of Beijing Forestry University, 2020, 42(4): 60-68. DOI: 10.12171/j.1000-1522.20190294
    [3]Chang Xiaochao, Liu Yong, Li Jinyu, Li Shian, Sun Minghui, Wan Fangfang, Zhang Jin, Song Xiehai. Effects of different nitrogen forms and ratios on growth of male Populus tomentosa seedlings[J]. Journal of Beijing Forestry University, 2018, 40(9): 63-71. DOI: 10.13332/j.1000-1522.20180178
    [4]Wang Junxiu, Zhou Yangyan, Han Xiao, An Yi, Guo Huihong, Xia Xinli, Yin Weilun, Liu Chao. Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436
    [5]Yan Ya-ping, Liu Yong, He Guo-xin, Xue Dun-meng, Li Cheng. Coupling effects of water and fertilizer on seedling growth and nutrient status of Catalpa bungei[J]. Journal of Beijing Forestry University, 2018, 40(2): 58-67. DOI: 10.13332/j.1000-1522.20170251
    [6]ZHAO Yang, QIAO Jie, WANG Bao-ping, FENG Yan-zhi, ZHOU Hai-jiang, CUI Ling-jun, WANG Wei-wei, YANG Dai-gui. Comprehensive selection of growth and stem form of superior paulownia clones in the hilly region of southern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 32-40. DOI: 10.13332/j.1000-1522.20160372
    [7]REN Shi-qi, CHEN Jian-bo, DENG Zi-yu, GUO Dong-qiang, LIU Yuan, HUANG Ming-jun, MENG Jiang-long, XIAO Wen-fa, XIANG Dong-yun. Effects of pruning on growth dynamic and veneer quality of Eucalyptus urophylla×E. grandis[J]. Journal of Beijing Forestry University, 2015, 37(3): 126-132. DOI: 10.13332/j.1000-1522.20140228
    [8]YANG Teng, DUAN Jie, MA L&uuml, -yi, JIA Li-ming, PENG Zuo-deng, CHEN Chuang, CHEN Jing. Effects of N application rates on growth, nutrient accumulation and translocation of Xanthoceras sorbifolia[J]. Journal of Beijing Forestry University, 2014, 36(3): 57-62. DOI: 10.13332/j.cnki.jbfu.2014.03.008
    [9]YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111.
    [10]HAN Lie-bao, WANG Chang-jun, SU De-rong, JIANG Yan-ling, XU Jun, ZHOU Jun. Accumulation and comparison of greenbelt nutrients under different water irrigating ways[J]. Journal of Beijing Forestry University, 2005, 27(6): 62-66.

Catalog

    Article views (1418) PDF downloads (79) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return