• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Feng Yuqian, Wang Xuan, Li Dongzhen, Zhang Wei, Li Yongxia, Zhang Xingyao. Prokaryotic expression, polyclonal antibody preparation and expression pattern analysis of venom-allergen proteins from Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2021, 43(9): 38-50. DOI: 10.12171/j.1000-1522.20210202
Citation: Feng Yuqian, Wang Xuan, Li Dongzhen, Zhang Wei, Li Yongxia, Zhang Xingyao. Prokaryotic expression, polyclonal antibody preparation and expression pattern analysis of venom-allergen proteins from Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2021, 43(9): 38-50. DOI: 10.12171/j.1000-1522.20210202

Prokaryotic expression, polyclonal antibody preparation and expression pattern analysis of venom-allergen proteins from Bursaphelenchus xylophilus

More Information
  • Received Date: May 30, 2021
  • Revised Date: July 14, 2021
  • Available Online: August 19, 2021
  • Published Date: October 14, 2021
  •   Objective  Venom-allergen proteins (VAPs) are proteins secreted by pine wood nematode during the process of infesting pine trees. Such proteins may inhibit the defense response of pine trees, thereby facilitating the colonization and spread of pine wood nematodes in pine trees. In this study, the prokaryotic expression, polyclonal antibody preparation and expression pattern analysis of four VAPs were conducted to clarify the structures and functions of the VAPs of Bursaphelenchus xylophilus (Bx-VAPs), in order to provide basic support for elucidating the mechanism of this kind of protein in the interaction between pine wood nematode and the host pine.
      Method  Polymerase chain reaction (PCR) was used to amplify the fourBx-VAPs genes, and the expression levels of the four Bx-VAPs genes were detected by real-time quantitative polymerase chain reaction (RT-qPCR) method. At the same time, the amplified full-length products of the four genes were cloned into the pET32b prokaryotic expression vector separately, and the recombinant plasmid pET-32b-VAPS were constructed. After the identification, the correct recombinant plasmids were transformed into Escherichia coli BL21DE3 for induced expression. The purified Bx-VAPs were used to immunize Balb/c mice respectively, and polyclonal antibodies were obtained after four immunizations; the antibody serum titer was determined by indirect enzyme-linked immunosorbent assay (ELISA); the proteins were identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western-blot (WB). Finally, bioinformatics methods were used to analyze and predict the physical and chemical properties, secondary structure, surface properties and B cell epitopes of the proteins encoded by these four genes.
      Result  There were significant differences in the expression levels of the four Bx-VAPs genes of B. xylophilus during different developmental stages. Among them, the Bx-VAP1 and Bx-VAP2 genes were expressed in high level in the adult stage, and the Bx-VAP3 and Bx-VAP4 genes were expressed in high level in propagative third-larval instar (L3). The constructed recombinant plasmid pET-32b-VAPn induced and expressed the proteins with a molecular weight between 21 kDa and 31 kDa. The three purified polyclonal antibodies anti-VAP1, anti-VAP2 and anti-VAP3 all had higher effect on the B. xylophilus protein solution specificity, but the anti-VAP4 antibody failed to react with the protein solution of B. xylophilus. The secondary structures of the four Bx-VAPs were dominated by alph-helix and random coils, all had signal peptides, SCP domains, and no transmembrane domains. Bx-VAP1 had many potential dominant B cell epitopes.
      Conclusion  The protein size induced by recombinant plasmid pET-32b-VAPn is consistent with the predicted protein size. All are expression of inclusion bodies, the prepared polyclonal anti-VAP1, anti-VAP2 and anti-VAP3 have high titer and good specificity. Bx-VAP1 has potential B cell epitope advantages. This study provides experimental materials and basis for further research on the function of B. xylophilus VAPs protein and related pathogenic mechanisms.
  • [1]
    Cantacessi C, Gasser R B. SCP/TAPS proteins in helminths: where to from now [J]? Molecular & Cellular Probes, 2012, 26(1): 54−59.
    [2]
    Jasmer D P, Goverse A, Smant G. Parasitic nematodeinteractions with mammals and plants[J]. Annual Review of Phytopathology, 2003, 41(1): 245−270. doi: 10.1146/annurev.phyto.41.052102.104023
    [3]
    Wilbers R H P, Schneiter R, Holterman M H M, et al. Secreted venom allergen-like proteins of helminths: conserved modulators of host responses in animals and plants [J/OL]. PLoS Pathogens, 2018, 14(10): e1007300 [2021−03−15]. https://doi.org/10.1371/journal.ppat.1007300.
    [4]
    Ding X, Shields J, Allen R, et al. Molecular cloning and characterisation of a venom allergen AG5-like cDNA from Meloidogyne incognita[J]. International Journal for Parasitology, 2000, 30(1): 77−81. doi: 10.1016/S0020-7519(99)00165-4
    [5]
    Wang X, Li H, Hu Y, et al. Molecular cloning and analysis of a new venom allergen-like protein gene from the root-knot nematode Meloidogyne incognita[J]. Experimental Parasitology, 2007, 117(2): 133−140. doi: 10.1016/j.exppara.2007.03.017
    [6]
    Gao B, Allen R, Maier T, et al. Molecular characterisation and expression of two venom allergen-like protein genes in Heterodera glycines[J]. International Journal for Parasitology, 2002, 31(14): 1617−1625.
    [7]
    王秉宇, 彭德良, 黄文坤, 等. 马铃薯腐烂茎线虫类毒液过敏原蛋白基因cDNA全长的克隆与序列分析[J]. 华中农业大学学报, 2011, 30(2):182−186.

    Wang B Y, Peng D L, Huang W K, et al. Cloning and sequence analysis of a venom allergen-like proteins gene from Ditylenchus destructoron potato in China[J]. Journal of Huazhong Agricultural University, 2011, 30(2): 182−186.
    [8]
    Lin S, Jian H, Zhao H, et al. Cloning and characterization of a venom allergen-like protein gene cluster from the pinewood nematode Bursaphelenchus xylophilus[J]. Experimental Parasitology, 2011, 127(2): 440−447. doi: 10.1016/j.exppara.2010.10.013
    [9]
    Lozano-Torres J L, Wilbers R H P, Gawronski P, et al. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode[J]. Proceedings of the National Academy of Sciences, 2012, 109(25): 10119−10124. doi: 10.1073/pnas.1202867109
    [10]
    Luo S J, Liu S M, Kong L G, et al. Two venom allergen-like proteins, HaVAP1 and HaVAP2, are involved in the parasitism of Heterodera avenae[J]. Molecular Plant Pathology, 2019, 20(4): 471−484. doi: 10.1111/mpp.12768
    [11]
    Li J Y, Xu C L, Yang S H, et al. A venom allergen-like protein, RsVAP, the first discovered effector protein of Radopholus similis that inhibits plant defense and facilitates parasitism[J/OL]. International Journal of Molecular Sciences, 2021, 22: 4782 [2021−03−15]. https://doi.org/10.3390/ijms22094782.
    [12]
    Franchini G, Porfido J, Shimabukuro M, et al. The unusual lipid binding proteins of parasitic helminths and their potential roles in parasitism and as therapeutic targets[J]. Prostaglandins Leukotrienes & Essential Fatty Acids, 2015, 93: 31−36.
    [13]
    Duarte A, Curtis R, Maleita C, et al. Characterization of the venom allergen—like protein (VAP-1) and the fatty acid and retinol binding protein (far-1) genes in Meloidogyne hispanica[J]. European Journal of Plant Pathology, 2014, 139(4): 825−836. doi: 10.1007/s10658-014-0436-3
    [14]
    Kang J S, Koh Y H, Moon Y S, et al. Molecular properties of a venom allergen-like protein suggest a parasitic function in the pinewood nematode Bursaphelenchus xylophilus[J]. International Journal for Parasitology, 2012, 42(1): 63−70. doi: 10.1016/j.ijpara.2011.10.006
    [15]
    Somvanshi V S, Phani V, Banakar P, et al. Transcriptomic changes in the pre-parasitic juveniles of Meloidogyne incognita induced by silencing of effectors Mi-msp-1 and Mi-msp-20[J]. 3 Biotech, 2020, 10: 360. doi: 10.1007/s13205-020-02353-8
    [16]
    Nickle W R, Golden A M, Mamiya Y, et al. On the taxonomy and morphology of the pine wood nematode, Bursaphelenchus xylophilus (Steiner & Buhrer 1934) Nickle 1970[J]. Journal of Nematology, 1981, 13(3): 385.
    [17]
    理永霞, 张星耀. 我国中温带面临的松材线虫入侵扩张高风险[J]. 温带林业研究, 2018, 1(1):3−6. doi: 10.3969/j.issn.2096-4900.2018.01.002

    Li Y X, Zhang X Y. High risk of invasion and expansion of pine wood nematode in middle temperate zone of China[J]. Journal of Temperate Forestry Research, 2018, 1(1): 3−6. doi: 10.3969/j.issn.2096-4900.2018.01.002
    [18]
    叶建仁. 松材线虫病在中国的流行现状, 防治技术与对策分析[J]. 林业科学, 2019, 55(9):1−10.

    Ye J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures[J]. Scientia Silvae Sinicae, 2019, 55(9): 1−10.
    [19]
    Yan X, Cheng X Y, Wang Y S, et al. Comparative transcriptomics of two pathogenic pinewood nematodes yields insights into parasitic adaptation to life on pine hosts[J]. Gene, 2012, 505(1): 81−90. doi: 10.1016/j.gene.2012.05.041
    [20]
    林世锋, 简恒, 赵海娟, 等. 松材线虫类毒过敏原蛋白的原核表达及多克隆抗体的制备[J]. 植物病理学报, 2013, 43(2):128−135. doi: 10.3969/j.issn.0412-0914.2013.02.003

    Lin S F, Jian H, Zhao H J, et al. Prokaryotic expression of venom allergen-like protein of Bursaphelenchus xylophilus and preparation of its polyclonal antibody[J]. Acta Phytopathologica Sinica, 2013, 43(2): 128−135. doi: 10.3969/j.issn.0412-0914.2013.02.003
    [21]
    王颖.松材线虫Bx-VAP-1基因在昆虫细胞中的表达及功能分析[D].哈尔滨: 东北林业大学, 2014.

    Wang Y. Functional analysis of venom allergen-like protein gene from the pinewood nematode Bursaphelenchus xylophilus using insect cell expression system [D]. Harbin: Northeast Forestry University, 2014.
    [22]
    Li Y X, Wang Y, Liu Z Y, et al. Functional analysis of the venom allergen-like protein gene from pine wood nematode Bursaphelenchus xylophilus using a baculovirus expression system[J]. Physiological and Molecular Plant Pathology, 2016, 93: 58−66. doi: 10.1016/j.pmpp.2015.12.006
    [23]
    Schatz G, Dobberstein B. Common principles of protein translocation across membranes[J]. Science, 1996, 271: 1519−1526. doi: 10.1126/science.271.5255.1519
    [24]
    Rose J K, Shaferman A. Conditional expression of vesicular stomatitis virus glycoprotein gene in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(11): 6670−6674. doi: 10.1073/pnas.78.11.6670
  • Related Articles

    [1]Chen Beibei, Jiang Jun, Lu Yuanchang, Liu Xianzhao, Jia Hongyan, Ming Angang, Zhang Xianqiang. Effects of thinning intensity on the growth of interplanting broadleaved trees under Pinus massoniana plantation[J]. Journal of Beijing Forestry University, 2021, 43(1): 58-65. DOI: 10.12171/j.1000-1522.20200086
    [2]Zhang Xiaoyan, Li Yufei, Liu Guihua, Xu Zaoshi, Deng Bo. Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus[J]. Journal of Beijing Forestry University, 2020, 42(4): 60-68. DOI: 10.12171/j.1000-1522.20190294
    [3]Chang Xiaochao, Liu Yong, Li Jinyu, Li Shian, Sun Minghui, Wan Fangfang, Zhang Jin, Song Xiehai. Effects of different nitrogen forms and ratios on growth of male Populus tomentosa seedlings[J]. Journal of Beijing Forestry University, 2018, 40(9): 63-71. DOI: 10.13332/j.1000-1522.20180178
    [4]Wang Junxiu, Zhou Yangyan, Han Xiao, An Yi, Guo Huihong, Xia Xinli, Yin Weilun, Liu Chao. Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436
    [5]Yan Ya-ping, Liu Yong, He Guo-xin, Xue Dun-meng, Li Cheng. Coupling effects of water and fertilizer on seedling growth and nutrient status of Catalpa bungei[J]. Journal of Beijing Forestry University, 2018, 40(2): 58-67. DOI: 10.13332/j.1000-1522.20170251
    [6]ZHAO Yang, QIAO Jie, WANG Bao-ping, FENG Yan-zhi, ZHOU Hai-jiang, CUI Ling-jun, WANG Wei-wei, YANG Dai-gui. Comprehensive selection of growth and stem form of superior paulownia clones in the hilly region of southern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 32-40. DOI: 10.13332/j.1000-1522.20160372
    [7]REN Shi-qi, CHEN Jian-bo, DENG Zi-yu, GUO Dong-qiang, LIU Yuan, HUANG Ming-jun, MENG Jiang-long, XIAO Wen-fa, XIANG Dong-yun. Effects of pruning on growth dynamic and veneer quality of Eucalyptus urophylla×E. grandis[J]. Journal of Beijing Forestry University, 2015, 37(3): 126-132. DOI: 10.13332/j.1000-1522.20140228
    [8]YANG Teng, DUAN Jie, MA L&uuml, -yi, JIA Li-ming, PENG Zuo-deng, CHEN Chuang, CHEN Jing. Effects of N application rates on growth, nutrient accumulation and translocation of Xanthoceras sorbifolia[J]. Journal of Beijing Forestry University, 2014, 36(3): 57-62. DOI: 10.13332/j.cnki.jbfu.2014.03.008
    [9]YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111.
    [10]HAN Lie-bao, WANG Chang-jun, SU De-rong, JIANG Yan-ling, XU Jun, ZHOU Jun. Accumulation and comparison of greenbelt nutrients under different water irrigating ways[J]. Journal of Beijing Forestry University, 2005, 27(6): 62-66.

Catalog

    Article views (908) PDF downloads (82) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return