• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Guo Yong, Wei Yunqi, Ouyang Cuiyu. Research on LIM-based simulation of carbon stock baseline scenario in urban trees: taking the green space of a university in Beijing as an example[J]. Journal of Beijing Forestry University, 2022, 44(12): 111-120. DOI: 10.12171/j.1000-1522.20220002
Citation: Guo Yong, Wei Yunqi, Ouyang Cuiyu. Research on LIM-based simulation of carbon stock baseline scenario in urban trees: taking the green space of a university in Beijing as an example[J]. Journal of Beijing Forestry University, 2022, 44(12): 111-120. DOI: 10.12171/j.1000-1522.20220002

Research on LIM-based simulation of carbon stock baseline scenario in urban trees: taking the green space of a university in Beijing as an example

More Information
  • Received Date: January 02, 2022
  • Revised Date: May 12, 2022
  • Accepted Date: December 02, 2022
  • Available Online: December 04, 2022
  • Published Date: December 24, 2023
  •   Objective  Faced with the problem that the research on urban landscape tree carbon sink lacks refined small-scale research methods, a technical method based on Landscape Information Model (LIM) was proposed to reverse three-dimensional reconstruction of landscape trees at a specific time point in the urban environment. By simulating the growth of plants at a certain time, the corresponding biomass and carbon storage were obtained, so as to describe the baseline scenario of carbon storage.
      Method  The steps of the experiment to verify this method included: the harvesting and proceeding of the point clouds; the construction of the LIM model; and the calculation and evaluation of the carbon stock of the trees. The objects of the experiment were the 19 selected Sophora japonica standing in rows on both sides of the lawn on the university campus in Beijing. The point clouds harvesting was achieved by terrestrial laser scanning (TLS). The proceeding aimed to segment the individual tree and reduce the density of the points. LIM model construction included 3D digital model construction and growth simulation of individual scholar tree and a group of 19 scholar trees with GIS location. The growth simulation under baseline scenario was also included. The calculation and evaluation of the carbon stock of the trees were realized by applying an allometric growth equation under baseline scenario.
      Result  The LIM model of individual scholar tree was constructed. It was with a 3D digital model integrating the crown and roots and the optimal growth curve, that was from the reconstruction of point clouds. The LIM model was applied to simulate the dynamic growth of the individual scholar tree at the age of 8, 10, 20, 30, 40, 50 years old. The results stated that under the baseline scenario, from seedling emergence to the 50th year of growth, there was a net increase of 1 396.87 kg and an annual increase of 33.261 kg of carbon stock. Such method of LIM model construction was applied to the 19 scholar trees with different ages on campus. It was realized to simulate their individual and colonial biomass and carbon stock in 10, 20, 30, 40, 50 years. The baseline scenario of their carbon stock was described. The current average carbon stock of the 19 scholar trees was 115.33 kg. The current total carbon stock was 2 191.27 kg.
      Conclusion  The results state that it is feasible to apply LIM-based methods to research on the refined small-scale carbon stock of the existing urban trees. The numerical simulation of carbon stock in the LIM model is coupled with the spatial geometry model of plant growth. It is promising to have such a model coupling the carbon calculation and evaluation to much richer application scenarios, such as urban habitat protection, planning and design, project construction, operation and maintenance, asset management, and spatial governance.
  • [1]
    Nowak D J. Atmospheric carbon reduction by urban trees[J]. Journal of Environmental Management, 1993, 37: 207−217.
    [2]
    Nowak D J, Crane D E. Carbon storage and sequestration by urban trees in the USA[J]. Environmental Pollution, 2002, 116: 381−389. doi: 10.1016/S0269-7491(01)00214-7
    [3]
    Nowak D J, Greenfield E J, Hoehn R E, et al. Carbon storage and sequestration by trees in urban and community areas of the United States[J]. Environmental Pollution, 2013, 178: 229−236. doi: 10.1016/j.envpol.2013.03.019
    [4]
    Jo H K, McPherson E G. Carbon storage and flux in urban residential greenspace[J]. Journal of Environmental Management, 1995, 45(2): 109−133. doi: 10.1006/jema.1995.0062
    [5]
    Jo H K. Impacts of urban greenspace on offsetting carbon emissions for middle Korea[J]. Journal of Environmental Management, 2002(64): 115−126.
    [6]
    Myeong S, Nowak D J, Duggin M J. A temporal analysis of urban forest carbon storage using remote sensing[J]. Remote Sensing of Environment, 2006, 101(2): 277−282. doi: 10.1016/j.rse.2005.12.001
    [7]
    冀媛媛, 罗杰威, 王婷. 建立城市绿地植物固碳量计算系统对于营造低碳景观的意义[J]. 中国园林, 2016, 32(8): 31−35.

    Ji Y Y, Paolo V G, Wang T. Development and significance of carbon sequestration calculation system of green plantsin urban space[J]. Chinese Landscape Architecture, 2016, 32(8): 31−35.
    [8]
    应天玉, 李泽, 范文义. 哈尔滨城市森林碳储量的估算[J]. 东北林业大学学报, 2009, 37(9): 33−35. doi: 10.3969/j.issn.1000-5382.2009.09.012

    Ying T Y, Li Z, Fan W Y. Estimation of urban forests carbon storage in Harbin[J]. Journal of Northeast Forestry University, 2009, 37(9): 33−35. doi: 10.3969/j.issn.1000-5382.2009.09.012
    [9]
    长委, 胡月明, 沈德才, 等. 基于 CBERS 数据的亚热带森林地上碳储量估算[J]. 林业科学, 2014, 50(1): 88−96.

    Chang W, Hu Y M, Shen D C, et al. Assessing the capability of CBERS-02B CCD for estimating subtropical forest aboveground carbon storage[J]. Scientia Silvae Sinicae, 2014, 50(1): 88−96.
    [10]
    姜刘志, 杨道运, 梅立永, 等. 深圳市红树植物群落碳储量的遥感估算研究[J]. 湿地科学, 2018, 16(5): 618−625. doi: 10.13248/j.cnki.wetlandsci.2018.05.007

    Jiang L Z, Yang D Y, Mei L Y, et al. Remote sensing estimation of carbon storage of mangrove communities in Shenzhen City[J]. Wetland Science, 2018, 16(5): 618−625. doi: 10.13248/j.cnki.wetlandsci.2018.05.007
    [11]
    陈日东, 林什全, 潘国英, 等. 天堂山林场森林地上生物量及碳储量的遥感估算模型构建[J]. 林业与环境科学, 2019, 35(3): 71−77. doi: 10.3969/j.issn.1006-4427.2019.03.011

    Chen R D, Lin S Q, Pan G Y, et al. Remote sensing model for forest above-ground biomass and carbon storage in Tiantang Mountain Forest Farm[J]. Forest and Environmental Science, 2019, 35(3): 71−77. doi: 10.3969/j.issn.1006-4427.2019.03.011
    [12]
    谢军飞, 李玉娥, 李延明, 等. 北京城市园林树木碳贮量与固碳量研究[J]. 中国生态农业学报, 2007, 12(3): 5−7.

    Xie J F, Li Y E, Li Y M, et al. Calculation of carbon storage and sequestration in the urban trees of Beijing[J]. Chinese Journal of Eco-Agriculture, 2007, 12(3): 5−7.
    [13]
    王迪生. 基于生物量计测的北京城区园林绿地净碳储量研究[D]. 北京: 北京林业大学, 2010.

    Wang D S. Studies on net carbon storage of urban green space in Beijing based on biomass measurement[D]. Beijing: Beijing Forestry University, 2010.
    [14]
    吴珊珊, 张赟齐, 王陆军, 等. 合肥环城公园不同群落类型碳储量[J]. 南方农业(园林花卉版), 2010, 4(4): 44−48.

    Wu S S, Zhang Y Q, Wang L J, et al. Organic carbon storages in different urban forests on Huancheng Park in Hefei[J]. Southern Agriculture (Garden and Flower Edition), 2010, 4(4): 44−48.
    [15]
    沈云龙, 高波, 金仲秋, 等. 浙江省高速公路沿线乔木碳储量研究[J]. 浙江林业科技, 2012, 32(6): 8−13. doi: 10.3969/j.issn.1001-3776.2012.06.002

    Shen Y L, Gao B, Jin Z Q, et al. Carbon storage of trees along highways in Zhejiang Province[J]. Zhejiang Forestry Science and Technology, 2012, 32(6): 8−13. doi: 10.3969/j.issn.1001-3776.2012.06.002
    [16]
    葛之葳, 周丹燕, 郝雨杉, 等. 徐州城市绿地乔木层碳储量现状分析[J]. 林业科技开发, 2013, 27(6): 30−34.

    Ge Z W, Zhou D Y, Hao Y S, et al. Analysis on the present carbon stocks of the arbors layer in urban green spaces in Xuzhou[J]. Forest Science and Technology Development, 2013, 27(6): 30−34.
    [17]
    蔡会德, 张伟, 农胜奇, 等. 广西主要乔木树种碳含量测定[J]. 林业科技开发, 2014, 28(5): 72−74. doi: 10.13360/j.issn.1000-8101.2014.05.017

    Cai H D, Zhang W, Nong S Q, et al. Determination on the carbon contents of main tree species in Guangxi Province[J]. Forest Science and Technology Development, 2014, 28(5): 72−74. doi: 10.13360/j.issn.1000-8101.2014.05.017
    [18]
    姚正阳. 西安城市绿地地上碳储量估算研究[D]. 杨凌: 西北农林科技大学, 2015.

    Yao Z Y. Aboveground carbon stock of urban green space in Xi’an[D]. Yangling: Northwest A&F University, 2015.
    [19]
    魏小芳. 西安城区树木多样性及其碳储量的研究[D]. 西安: 西安建筑科技大学, 2016.

    Wei X F. The biodiversity and carbon storage of urban trees in Xi’an City[D]. Xi’an: Xi’an University of Architecture and Technology, 2016.
    [20]
    吕海亮. 城市植被与土壤碳储量时空变化规律研究[D]. 长春: 中国科学院东北地理与农业生态研究所, 2017.

    Lü H L. Spatial and temporal variations of urban vegetation and soil carbon storage[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2017.
    [21]
    唐琳. 城市园林绿化植物固碳效益研究[D]. 呼和浩特: 内蒙古农业大学, 2019.

    Tang L. Study on carbon sequestration efficiency of urban landscaping plants[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
    [22]
    朱敏. 西安浐灞生态区城市绿地空间植被碳储量估算研究[D]. 西安: 西安建筑科技大学, 2020.

    Zhu M. Study on the carbon fixation evaluate of the green-land system in the Xi’an Chanba Eco-region[D]. Xi’an: Xi’an University of Architecture and Technology, 2020.
    [23]
    北京市质量技术监督局. 林业碳汇项目审定与核证技术规范: DB11/T 1089—2014[S]. 北京: 北京市地方标准, 2014.

    Beijing Municipal Bureau of Quality and Technical Supervision. Technical specification for forest carbon sequestration project approval and certification: DB11/T 1089−2014[S]. Beijing: Beijing Local Standard, 2014.
    [24]
    刘丹, 诸叶平, 刘海龙, 等. 植物三维可视化研究进展[J]. 中国农业科技导报, 2015, 101(1): 23−31. doi: 10.13304/j.nykjdb.2014.579

    Liu D, Zhu Y P, Liu H L, et al. Research progress on 3D plant visualization[J]. Journal of Agricultural Science and Technology, 2015, 101(1): 23−31. doi: 10.13304/j.nykjdb.2014.579
    [25]
    魏琼, 蒋湘宁. 基于 DOL 系统的树木三维可视化模型构建研究[J]. 北京林业大学学报, 2003, 25(3): 64−67.

    Wei Q, Jiang X N. Research on tree 3D visualization model construction based on DOL System[J]. Journal of Beijing Forestry University, 2003, 25(3): 64−67.
    [26]
    徐会杰. 植物根系通用三维模型的建模与仿真[J]. 河南科技大学学报(自然科学版), 2011, 128(1): 62−66, 120. doi: 10.15926/j.cnki.issn1672-6871.2011.01.027

    Xu H J. Modeling and simulation of general 3D model of plant roots[J]. Journal of Henan University of Science and Technology (Natural Science Edition), 2011, 128(1): 62−66, 120. doi: 10.15926/j.cnki.issn1672-6871.2011.01.027
    [27]
    丁维龙. 基于虚拟植物生长模型的农业专家系统研究[J]. 浙江工业大学学报, 2005, 33(5): 525−528, 533. doi: 10.3969/j.issn.1006-4303.2005.05.010

    Ding W L. Research on agricultural expert system based on artificial plant growth model[J]. Journal of Zhejiang University of Technology, 2005, 33(5): 525−528, 533. doi: 10.3969/j.issn.1006-4303.2005.05.010
    [28]
    王成德. 人工林树冠生长模拟及密度控制决策技术研究[D]. 北京: 北京林业大学, 2019.

    Wang C D. Research on crown growth simulation and density control decision-making technology of plantation[D]. Beijing: Beijing Forestry University, 2019.
    [29]
    欧建德. 基于简单竞争指数的南方红豆杉人工林树冠形状模拟[J]. 西北林学院学报, 2020, 165(5): 110−115. doi: 10.3969/j.issn.1001-7461.2020.05.17

    Ou J D. Crown shape simulation of Taxus chinensis var. mairei plantation based on simple competition index[J]. Journal of Northwest Forestry University, 2020, 165(5): 110−115. doi: 10.3969/j.issn.1001-7461.2020.05.17
    [30]
    郭湧. 论风景园林信息模型的概念内涵和技术应用体系[J]. 中国园林, 2020, 36(9): 17−22. doi: 10.19775/j.cla.2020.09.0017

    Guo Y. On the concept connotation and technical application system of landscape architecture information model[J]. Chinese Landscape Architecture, 2020, 36(9): 17−22. doi: 10.19775/j.cla.2020.09.0017
    [31]
    安得烈亚斯·卢卡, 郭湧, 高昂, 等. 智慧BIM乔木模型: 从设计图纸到施工现场[J]. 中国园林, 2020, 36(9): 29−35.

    Andreas L K, Guo Y, Gao A, et al. Smart BIM trees: from design drawing to construction site[J]. Chinese Landscape Architecture, 2020, 36(9): 29−35.
    [32]
    Marshall D, Johnson G, Hann D. Crown profile equations for stand-grown western hemlock trees in northwestern Oregon[J]. Canadian Journal Forest Research, 2003(33): 2059−2066.
    [33]
    Cescatti A. Modelling the radiative transfer in discontinuous canopies of asymmetric crowns (Ⅱ): model testing and application in a Norway spruce stand[J]. Ecological Modelling, 1997(101): 275−284.
    [34]
    Tjørve E, Tjørve K M C. A unified approach to the Richards-model family for use in growth analyses: why we need only two model forms[J]. Journal of Theoretical Biology, 2010(267): 417−425.
    [35]
    郭雪艳. 南京市常见园林植物的绿量研究[D]. 南京: 南京林业大学, 2009.

    Guo X Y. Research on the living vegetation volume of common landscape plants in Nanjing[D]. Nanjing: Nanjing Forestry University, 2009.
    [36]
    杨宁, 郑达, 李士美. 青岛四个阔叶树种立木结构特征分析[J]. 林业建设, 2019(4): 26−30.

    Yang N, Zheng D, Li S M. Analysis of tree structure characteristics of four broad-leaved species in Qingdao[J]. Forest Construction, 2019(4): 26−30.
    [37]
    辛士冬, 姜立春, 穆林. 黑龙江省红松人工林林分乔木层可加性碳储量模型[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 115−121.

    Xin S D, Jiang L C, Mu L. Predictive model of stand tree layer additive carbon storage of Korean pine plantation in Heilongjiang Province, China[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 115−121.
  • Related Articles

    [1]Chen Ling, Zhu Kun, Peng Zuodeng, Xiong Jianjun, Li Shuwen. Effects of short-term application of sludge products on migration and accumulation of mercury in soil-Styphnolobium japonicum system[J]. Journal of Beijing Forestry University, 2024, 46(9): 87-96. DOI: 10.12171/j.1000-1522.20230251
    [2]Li Jiahui, Peng Zuodeng, Liu Yong. Phenotypic difference and comprehensive evaluation of Sophora japonica in Beijing urban area[J]. Journal of Beijing Forestry University, 2022, 44(6): 23-33. DOI: 10.12171/j.1000-1522.20210013
    [3]NA Meng, LIU Ting-yan, ZHANG Yan-dong, FENG Chen-xin, LIU Dao-kun. Effects of stock density on carbon storage in Fraxinus mandshurica plantations[J]. Journal of Beijing Forestry University, 2017, 39(1): 20-26. DOI: 10.13332/j.1000-1522.20160111
    [4]LIU Xian-hao, LU Yuan-hang, MA Lú-yi, XUE Yang 3.. Estimation method of wood carbon storage at sacle of forest farm management unit.[J]. Journal of Beijing Forestry University, 2013, 35(5): 144-148.
    [5]HAO Peng, LI Jing-wen, CONG Ri-chun, ZHANG Nan, JING Jia-lin, HUANG Jing-jing. Response of arid plant Sophora alopecuroides to soil heterogeneity and competitors.[J]. Journal of Beijing Forestry University, 2012, 34(5): 94-99.
    [6]TIAN Shi-yan, ZHANG Yu-qing, WU Bin, ZHENG Hui, LI Chun-ping. Difference analysis in carbon storage of farmland shelterbelts in the plain area of China.[J]. Journal of Beijing Forestry University, 2012, 34(2): 39-44.
    [7]MA Guo-gang, WANG Jian-zhong, HUANG Jian-dong. Extraction and purification of rutin from Sophora japonica L.flower buds and spectral characteristics of its complex with chromium (Cr3+)[J]. Journal of Beijing Forestry University, 2011, 33(1): 144-149.
    [8]FAN Deng-xing, YU Xin-xiao, YUE Yong-jie, NIU Li-li, GAO Zhi-liang, MA Li-ya.. Forest carbon storage and its dynamics in Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 117-120.
    [9]ZHOU Chuan-yan, ZHOU Guo-yi, WANG Chun-lin, WANG Xu. Carbon storage dynamics under the forest restoration in Guangdong Province, China[J]. Journal of Beijing Forestry University, 2007, 29(2): 60-65.
    [10]HE Qian, LI Ji-yue, QI Tao. Influence of plant growth regulator on transpiring water consumption of Sophora japonica L.[J]. Journal of Beijing Forestry University, 2007, 29(1): 74-78. DOI: 10.13332/j.1000-1522.2007.01.013
  • Cited by

    Periodical cited type(3)

    1. 王浩鑫,蔡体久,景继鑫,杨朝纲,杨涵祎. 小兴安岭地区3种人工林碳储量及其分配特征. 林业勘查设计. 2025(01): 24-30+35 .
    2. 沈德才,胡桢健,陈跃洲,罗永光. 东莞城市绿地植物群落优势种群的生态位和种间联结分析. 林业与环境科学. 2024(06): 46-58 .
    3. 杨军,毛景山. 不同直播造林技术对吉林地区红松生长发育及土壤状况的影响. 绿色科技. 2023(21): 108-111 .

    Other cited types(1)

Catalog

    Article views (665) PDF downloads (88) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return