• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Di, Hu Xianwen, Wei Heng, Cheng Yunqing, Liu Jianfeng. Identification of ChSEP genes in the whole genome of hazelnut, preparation of polyclonal antibody and expression in ovules[J]. Journal of Beijing Forestry University, 2023, 45(8): 123-131. DOI: 10.12171/j.1000-1522.20220221
Citation: Zhao Di, Hu Xianwen, Wei Heng, Cheng Yunqing, Liu Jianfeng. Identification of ChSEP genes in the whole genome of hazelnut, preparation of polyclonal antibody and expression in ovules[J]. Journal of Beijing Forestry University, 2023, 45(8): 123-131. DOI: 10.12171/j.1000-1522.20220221

Identification of ChSEP genes in the whole genome of hazelnut, preparation of polyclonal antibody and expression in ovules

More Information
  • Received Date: June 04, 2022
  • Revised Date: June 27, 2022
  • Accepted Date: July 09, 2023
  • Available Online: July 11, 2023
  • Published Date: August 24, 2023
  •   Objective  Normal ovule (kernel) filling is the basis of hazel kernel formation. Insufficient ovule filling can frequently lead to the shriveled kernels or empty nuts in hazel. SEP belonging to the E class MADS-box gene plays an important role in ovule development of plants. To investigate the important role of ChSEP in hazelnut ovule development, the key ChSEP genes involved in the development of hazelnut ovules were identified. Then, polyclonal antibody against ChSEP was prepared, followed by immunohistochemical analysis of ChSEP using developing and aborted ovules as study materials. The present study is beneficial for better understanding of ovule development mechanism regulated by SEP in hazelnut.
      Method  All SEP gene family members in hazelnut genome were identified using genome and transcriptome data, and prokaryotic expression vector construction containing important SEP gene, gene expression, and polyclonal antibody preparation were carried out. Finally, important SEP involved in ovule development regulation was detected by immunohistochemistry.
      Result  (1) Three ChSEP sequences were identified in the genome of hazelnut, including Cor0054610.1, Cor0008190.1 and Cor0119400.1. All SEP proteins contained SRF-TF and K-box motifs. Polyclonal antisera of Cor0054610.1 was prepared, and the molecular mass of polyclonal antibody E18305 and E18306 was about 45 kDa, and 1−2 ng antigen could be detected after 1∶1000 dilution. (2) Immunohistochemical analysis showed that ChSEP was expressed in the integument of both developing and abortive ovules. The expression of ChSEP in integuments was higher than that in cotyledons. There was no significant difference in the distribution of ChSEP between developing and abortive ovules.
      Conclusion  This study provides evidence that ChSEP (Cor0054610.1) is involved in the regulation of hazelnut ovule development at both transcriptional and protein levels, and provides a scientific basis for better understanding of the ovule development mechanism in hazelnut.
  • [1]
    Theißen G, Melzer R, Rümpler F. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution[J]. Development, 2016, 143(18): 3259−3271. doi: 10.1242/dev.134080
    [2]
    Pabón-Mora N, Wong G K, Ambrose B A. Evolution of fruit development genes in flowering plants[J]. Frontiers in Plant Science, 2014, 5(5): 300.
    [3]
    Theißen G. Development of floral organ identity: stories from the MADS house[J]. Current Opinion in Plant Biology, 2001, 4(1): 75−85. doi: 10.1016/S1369-5266(00)00139-4
    [4]
    刘剑锋, 孙莹, 魏珩, 等. 榛子胚珠不同发育阶段circRNA的分析与鉴定[J]. 园艺学报, 2021, 48(6): 1053−1066.

    Liu J F, Sun Y, Wei H, et al. Analysis and identification of circRNAs of hazel ovule at different developmental stages[J]. Acta Horticulturae Sinica, 2021, 48(6): 1053−1066.
    [5]
    Liu J F, Cheng Y Q, Yan K, et al. The relationship between reproductive growth and blank fruit formation in Corylus heterophylla Fisch[J]. Scientia Horticulturae, 2012, 136: 128−134. doi: 10.1016/j.scienta.2012.01.008
    [6]
    Liu J F, Luo Q Z, Zhang X Z, et al. Identification of vital candidate microRNA/mRNA pairs regulating ovule development using high-throughput sequencing in hazel[J]. BMC Developmental Biology, 2020, 20(1): 13. doi: 10.1186/s12861-020-00219-z
    [7]
    Liu J F, Wei H, Zhang X Z, et al. Chromosome-level genome assembly and HazelOmics database construction provides insights into unsaturated fatty acid synthesis and cold resistance in hazelnut (Corylus heterophylla)[J]. Frontiers in Plant Science, 2021, 12: 766548. doi: 10.3389/fpls.2021.766548
    [8]
    Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[J]. Nucleic Acids Symposium Series, 1999, 41(41): 95−98.
    [9]
    Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2020, 48(D1): D265−D268. doi: 10.1093/nar/gkz991
    [10]
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [11]
    Subramanian B, Gao S, Lercher M, et al. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees[J]. Nucleic Acids Research, 2019, 47(W1): W270−W275. doi: 10.1093/nar/gkz357
    [12]
    Bailey T L, Boden M, Buske F A, et al. MEME Suite: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(Web Server issue): W202−W208.
    [13]
    陈德鑫, 李雯雯, 李思斌, 等. 烟草NteIF2α的原核表达、纯化及多克隆抗体制备和应用[J]. 农业生物技术学报, 2017, 25(1): 50−57.

    Chen D X, Li W W, Li S B, et al. Prokaryotic expression, purification of NteIF2α and preparation and application of polyclonal antibody in Nicotiana tabacum[J]. Journal of Agricultural Biotechnology, 2017, 25(1): 50−57.
    [14]
    郝英辰, 龙月, 郭豪, 等. 烟草NtGCN2的原核表达、纯化及多克隆抗体制备[J]. 农业生物技术学报, 2019, 27(1): 170−179.

    Hao Y C, Long Y, Guo H, et al. Prokaryotic expression, purification and polyclonal antibody preparation of tobacco (Nicotiana tabacum) NtGCN2[J]. Journal of Agricultural Biotechnology, 2019, 27(1): 170−179.
    [15]
    Smaczniak C, Immink R G, Angenent G C, et al. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies[J]. Development, 2012, 139(17): 3081−3098. doi: 10.1242/dev.074674
    [16]
    Pelaz S, Ditta G S, Baumann E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature, 2000, 405: 200−203. doi: 10.1038/35012103
    [17]
    Ditta G, Pinyopich A, Robles P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Current Biology, 2004, 14(21): 1935−1940. doi: 10.1016/j.cub.2004.10.028
    [18]
    Jetha K, Theißen G, Melzer R. Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes[J]. Nucleic Acids Research, 2014, 42(17): 10927−10942. doi: 10.1093/nar/gku755
    [19]
    Liu J F, Liu J Y, Zhang X Z, et al. Pollen tube in hazel grows intermittently: role of Ca2+ and expression of auto-inhibited Ca2+ pump[J]. Scientia Horticulturae, 2021, 282: 110032. doi: 10.1016/j.scienta.2021.110032
    [20]
    Liu J F, Zhang H D, Cheng Y Q, et al. Comparison of ultrastructure, pollen tube growth pattern and starch content in developing and abortive ovaries during the progamic phase in hazel[J]. Frontiers in Plant Science, 2014, 5(5): 528.
    [21]
    Liu J F, Cheng Y Q, Liu C M, et al. Pollen tube in hazel grows intermittently: role of Ca2+ and expression of auto-inhibited Ca2+ pump[J]. Scientia Horticulturae, 2013, 150: 348−353. doi: 10.1016/j.scienta.2012.12.001
    [22]
    Xu Y, Zhang L, Xie H, et al. Expression analysis and genetic mapping of three SEPALLATA-like genes from peach (Prunus persica (L.) Batsch)[J]. Tree Genetics & Genomes, 2008, 4(4): 693−703.
    [23]
    Ireland H S, Yao J L, Tomes S, et al. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening[J]. Plant Journal, 2013, 73(6): 1044−1056. doi: 10.1111/tpj.12094
    [24]
    高玮林, 张力曼, 薛超玲, 等. 枣 E 类 MADS 基因在花和果中的表达及其蛋白互作研究[J]. 园艺学报, 2022, 49(4): 739−748.

    Gao W L, Zhang L M, Xue C L, et al. Expression of E-type MADS-box genes in flower and fruits and protein interaction analysis in Chinese jujube[J]. Acta Horticulturae Sinica, 2022, 49(4): 739−748.
    [25]
    Ampomah-Dwamena C, Morris B A, Sutherland P, et al. Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion[J]. Plant Physiology, 2002, 130(2): 605−617. doi: 10.1104/pp.005223
    [26]
    Pneuli L, Hareven D, Broday L, et al. The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers[J]. Plant Cell, 1994, 6(2): 175−186. doi: 10.2307/3869637
  • Related Articles

    [1]Sun Yufeng, Tan Jiajin, Yuan Yuchao, Zhao Xiaojia, Ye Jianren. Prokaryotic expression of nematicidal proteases ATP-α and ClpX from Bacillus cereus NJSZ-13[J]. Journal of Beijing Forestry University, 2024, 46(4): 84-90. DOI: 10.12171/j.1000-1522.20220231
    [2]Chen Yuqing, Du Bingshuai, Wang Shengnan, Cao Yibo, Yuan Deyi, Zhang Lingyun. Histological characteristics and related gene expression analysis of ovule abortion in Camellia oleifera[J]. Journal of Beijing Forestry University, 2023, 45(9): 9-20. DOI: 10.12171/j.1000-1522.20220182
    [3]Feng Yuqian, Wang Xuan, Li Dongzhen, Zhang Wei, Li Yongxia, Zhang Xingyao. Prokaryotic expression, polyclonal antibody preparation and expression pattern analysis of venom-allergen proteins from Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2021, 43(9): 38-50. DOI: 10.12171/j.1000-1522.20210202
    [4]Cheng Yunqing, Qi Ming, Zhao Yongbin, Xing Jiyang, Liu Jianfeng. Comparative studies on differently expressed proteomes of developing and abortive ovary in hazelnut[J]. Journal of Beijing Forestry University, 2018, 40(3): 13-25. DOI: 10.13332/j.1000-1522.20170352
    [5]Yu Wen-jing, Song Xiao-shuang, Deng Xun, Ping Xiao-fan, Zhou Qi, Liu Zhi-hua. Cloning, prokaryotic expression and function of the eliciting plant response protein of Trichoderma asperellum[J]. Journal of Beijing Forestry University, 2018, 40(1): 17-26. DOI: 10.13332/j.1000-1522.20170249
    [6]CAO Shan, JIANG Lu-yao, LI Li-hong, YAO Xiao-yun, ZHANG Qiang, HAN Jing-yi, WANG Ying, LI Hui, LU Hai.. Cloning and enzymatic analysis of medium-chain acyl coenzyme A synthetase in Populus trichocarpa.[J]. Journal of Beijing Forestry University, 2016, 38(7): 9-15. DOI: 10.13332/j.1000-1522.20160121
    [7]CHEN Lei, ZHANG Honghai, MA Jian-zhang. Morphological characteristics and regional distribution of endocrine cells in the digestive tract of Martes zibellina[J]. Journal of Beijing Forestry University, 2010, 32(2): 127-132.
    [8]MA Yan, , ZHU Xin-lei, YANG Chang-geng, ZHANG Fu-chun, YIN Wei-lun. Cloning and expression analysis of Pedhn gene[J]. Journal of Beijing Forestry University, 2008, 30(3): 63-67.
    [9]FAN Bing-you, HU Shi-yu, LU Hai, JIANG Xiang-ning. Soluble prokaryotic expression of 4-coumarate:coenzyme A ligase from Populus tomentosa and enzyme activity of recombinant 4CL1[J]. Journal of Beijing Forestry University, 2006, 28(2): 1-8.
    [10]HOU Ya-nan, QIN Yao, LI Feng-lan. Morphological and histochemical studies on sex differentiation in Gymnocladus dioicus[J]. Journal of Beijing Forestry University, 2005, 27(5): 48-53.
  • Cited by

    Periodical cited type(4)

    1. 杨彬,郭志刚,王大岭,孙忠全,高欢,张骁. 长白落叶松人工林林分断面积生长模型的构建. 吉林林业科技. 2023(04): 13-15+42 .
    2. 贺鹏,陈振雄,刘宪钊. 湖南省马尾松和杉木林分断面积生长模型构建. 林业资源管理. 2021(05): 56-61 .
    3. 颜伟,段光爽,王一涵,孙钊,周桃龙,符利勇. 河南省栎类和杨树林分断面积和蓄积生长模型构建. 北京林业大学学报. 2019(06): 55-61 . 本站查看
    4. 王冬至,张冬燕,蒋凤玲,许中旗,张志东,黄选瑞. 三个主要树种单木生物量及其器官分配模型. 自然资源学报. 2018(08): 1390-1401 .

    Other cited types(2)

Catalog

    Article views (263) PDF downloads (55) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return