• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Cheng Yunqing, Qi Ming, Zhao Yongbin, Xing Jiyang, Liu Jianfeng. Comparative studies on differently expressed proteomes of developing and abortive ovary in hazelnut[J]. Journal of Beijing Forestry University, 2018, 40(3): 13-25. DOI: 10.13332/j.1000-1522.20170352
Citation: Cheng Yunqing, Qi Ming, Zhao Yongbin, Xing Jiyang, Liu Jianfeng. Comparative studies on differently expressed proteomes of developing and abortive ovary in hazelnut[J]. Journal of Beijing Forestry University, 2018, 40(3): 13-25. DOI: 10.13332/j.1000-1522.20170352

Comparative studies on differently expressed proteomes of developing and abortive ovary in hazelnut

More Information
  • Received Date: October 22, 2017
  • Revised Date: January 22, 2018
  • Published Date: February 28, 2018
  • ObjectiveThe aim of this study is to screen candidate proteins which may be involved in the regulation of abortive ovary formation in hazelnut and provide scientific base for its genetic improvement.
    MethodHybrid hazelnut (Corylus heterophylla × C. avellana) cultivar 'Dawei' was used as study materials, and iTRAQ (Isobaric tags for relative and absolute quantification) technology was performed using protein extracted from abortive ovaries and developing ovaries. COG (Cluster of orthologous groups of proteins) functional classification was carried out using all the identified proteins, and their potential biological functions were predicted. Subsequently, significantly differently expressed proteins (DEPs) were identified according to protein quantification results, and GO (Gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis of DEPs were carried out to explore their general molecular functions and important KEGG pathways. Finally, potential important proteins involved in abortive ovary formation were chosen mainly from significantly enriched KEGG pathways.
    ResultProtein identification generated 317068 total spectra, 14267 unique peptides and 3538 proteins. Functional class of R, O, J, G and C in COG analysis accounted for 19.36%, 9.97%, 7.80%, 7.67% and 6.76% of total proteins with COG annotations. In total, 249 DEPs were identified in the paired comparison of developing and abortive ovary, including 180 and 69 up- and down-regulated DEPs. Based on GO and KEGG enrichment analysis results, these DEPs mainly executed binding and catalysis molecular functions, and 11 significant enriched KEGG pathways were identified, including phenylpropanoid biosynthesis (ko00940), photosynthesis (ko00195), metabolic pathways (ko01100), photosynthesis-antenna proteins (ko00196) and biosynthesis of secondary metabolites (ko01110). Thirty-seven important candidate DEPs were identified and these DEPs may contribute to abortive ovary formation in hazelnut.
    ConclusionProteins related to photosynthesis, carbohydrate transport and metabolism, energy production and conversion, pollen tube growth and DNA methylation may regulate ovary abortion in hazel. Our findings provide insight into the molecular mechanisms of ovary abortion in hazelnut.
  • [1]
    刘剑锋, 颜堃, 程云清, 等.榛子花粉生活力和柱头可授性与结实特征研究[J].北京林业大学学报, 2012, 34(3): 58-63. http://j.bjfu.edu.cn/article/id/9752

    Liu J F, Yan K, Cheng Y Q, et al. Pollen viability stigma receptivity and fruiting characteristics of hazelnut[J]. Journal of Beijing Forestry University, 2012, 34(3): 58-63. http://j.bjfu.edu.cn/article/id/9752
    [2]
    Liu J F, Zhang H D, Cheng Y Q, et al. Comparison of ultrastructure, pollen tube growth pattern and starch content in developing and abortive ovaries during the progamic phase in hazel[J]. Frontiers in Plant Science, 2014, 5(5): 528. http://cn.bing.com/academic/profile?id=7a61f3d88a5cd611162dd92b682144c5&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    刘剑锋, 张春吉, 程云清, 等.ABA及其合成抑制剂钨酸钠处理对平榛胚珠发育的影响[J].园艺学报, 2013, 40(2): 213-220. http://www.cqvip.com/QK/90024X/201302/44974868.html

    Liu J F, Zhang C J, Cheng Y Q, et al. Effects of ABA and its synthesis inhibitor sodium tungstate treatments on ovule development of Corylus heterophylla[J]. Acta Horticulturae Sinica, 2013, 40(2): 213-220. http://www.cqvip.com/QK/90024X/201302/44974868.html
    [4]
    Sogo A, Tobe H. Delayed fertilization and pollen- tube growth in pistils of Fagus japonica (Fagaceae)[J]. American Journal of Botany, 2006, 93(12): 1748-1756. doi: 10.3732/ajb.93.12.1748
    [5]
    Sogo A, Tobe H. Intermittent pollen-tube growth in pistils of alders (Alnus)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24):8770-8775. doi: 10.1073/pnas.0503081102
    [6]
    Sogo A, Tobe H. Mode of pollen-tube growth in pistils of Myricarubra (Myricaceae): acomparison with related families[J]. Annals of Botany, 2006, 97(1):71. doi: 10.1093/aob/mcj015
    [7]
    Liu J F, Zhang H D, Cheng Y Q, et al. Pistillate flower development and pollen-tube growth mode during the delayed fertilization stage in Corylus heterophylla Fisch[J]. Plant Reproduction, 2014, 27(3): 145-152. doi: 10.1007/s00497-014-0248-9
    [8]
    Beyhan N, Marangoz D. An investigation of the relationship between reproductive growth and yield loss in hazelnut[J]. Scientia Horticulturae, 2007, 113(2):208-215. doi: 10.1016/j.scienta.2007.02.007
    [9]
    Cheng Y Q, Wang J, Liu J F, et al. Analysis of ovary DNA methylation during delayed fertilization in hazel using the methylation-sensitive amplification technique[J]. Acta Physi-ologiae Plantarum, 2015, 37(11):231. doi: 10.1007/s11738-015-1984-7
    [10]
    Isaacson T, Damasceno C M, Saravanan R S, et al.Sample extraction techniques for enhanced proteomic analysis of plant tissues[J]. Nature Protocols, 2006, 1(2):769-774. doi: 10.1038/nprot.2006.102
    [11]
    Hammond J, Kruger N. The bradford method for protein quantitation[J]. Methods in Molecular Biology, 1994, 32(32):9. http://cn.bing.com/academic/profile?id=95256c7e3a6691803d617b77889d2e00&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    Wang X, Shan X, Wu Y, et al. iTRAQ-based quantitative proteomics analysis reveals new metabolic pathways responding to chilling stress in maize seedlings[J]. Journal of Proteomics, 2016, 146:14-24. doi: 10.1016/j.jprot.2016.06.007
    [13]
    Wen B, Zhou R, Feng Q, et al. IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags[J].Proteomics, 2014, 14(20):2280-2285. doi: 10.1002/pmic.201300361
    [14]
    Maksup S, Roytrakul S, Supaibulwatana K. Physiological and comparative proteomic analyses of Thai jasmine rice and two check cultivars in response to drought stress[J]. Journal of Plant Interactions, 2014, 9(1):43-55. doi: 10.1080/17429145.2012.752042
    [15]
    Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1):323. doi: 10.1186/1471-2105-12-323
    [16]
    Kanazawa A, Ostendorf E, Kohzuma K, et al. Chloroplast ATP synthase modulation of the thylakoid proton motive force: implications for photosystem I and photosystem Ⅱ photoprotection[J]. Frontiers in Plant Science, 2017, 8(8): 719. http://cn.bing.com/academic/profile?id=2048a6e26c0a2a6505b9f5316f24455c&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    Allahverdiyeva Y, Suorsa M, Tikkanen M, et al. Photoprotection of photosystems in fluctuating light intensities[J]. Journal of Experimental Botany, 2015, 66(9):2427. doi: 10.1093/jxb/eru463
    [18]
    Stover E, Fargione M, Risio R, et al. Prebloom foliar boron, zinc, and urea applications enhance cropping of some 'Empire' and 'McIntosh' apple orchards in New York[J]. Hortscience A Publication of the American Society for Horticultural Science, 1999, 34(2):210-214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=212eda579b19e961f60737d9a7fe5099
    [19]
    Liu J, Cheng Y, Liu C, et al. Temporal changes of disodium fluorescein transport in hazelnut during fruit development stage[J]. Scientia Horticulturae, 2013, 150(2):348-353. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d536e6c26dd6ab4c4f9ecfa56ba22b8
    [20]
    Postaire O, Tournaireroux C, Grondin A, et al. A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis[J]. Plant Physiology, 2010, 152(3):1418. doi: 10.1104/pp.109.145326
    [21]
    Mahdieh M, Mostajeran A, Horie T, et al. Drought stress alters water relations and expression of PIP-Type aquaporin genes in Nicotiana tabacum plants[J]. Plant & Cell Physiology, 2008, 49(5):801. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000001932104
    [22]
    Fulton L M, Cobbett C S. Two alpha-L-arabinofuranosidase genes in Arabidopsis thaliana are differentially expressed during vegetative growth and flower development[J]. Journal of Experimental Botany, 2003, 54(392):2467. doi: 10.1093/jxb/erg269
    [23]
    Eckardt N A, Portis A R, Ogren W L, et al. Growth and photosynthesis under high and low irradiance of Arabidopsis thaliana antisense mutants with reduced ribulose-1, 5-bisphosphate carboxylase/oxygenaseactivase content[J]. Plant Physiology, 1997, 113(2):575-586. doi: 10.1104/pp.113.2.575
    [24]
    Hahn D, Kaltenbach C, Kück U. The Calvin cycle enzyme sedoheptulose-1, 7-bisphosphatase is encoded by a light-regulated gene in Chlamydomonas reinhardtii[J]. Plant Molecular Biology, 1998, 36(6):929-934. doi: 10.1023/A:1005911022601
    [25]
    Yuan C Z. Genetic transformation and biological function analysis of the sedoheptulose-1, 7-bisphosphatase gene from mulberry[J]. Science of Sericulture, 2013, 39(3):413-419. http://cn.bing.com/academic/profile?id=a1c9ce082e60d577b3c387fb3ad08d34&encoded=0&v=paper_preview&mkt=zh-cn
    [26]
    Groenewald J H, Botha F C. Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes[J]. Transgenic Research, 2008, 17(1):85-92. doi: 10.1007/s11248-007-9079-x
    [27]
    Banasiak A, Ibatullin F M, Brumer H, et al. Glycoside hydrolase activities in cell walls of sclerenchyma cells in the inflorescence stems of Arabidopsis thaliana visualized in situ[J]. Plants, 2014, 3(4):513-525. doi: 10.3390/plants3040513
    [28]
    Andre C, Benning C. Arabidopsis seedlings deficient in a plastidic pyruvate kinase are unable to utilize seed storage compounds for germination and establishment[J]. Plant Physiology, 2007, 145(4):1670. doi: 10.1104/pp.107.108340
    [29]
    赵艳, 沙伟, 金忠民, 等.大豆class Ⅲ酸性内切几丁质酶基因及其启动子表达方式[J].中国油料作物学报, 2013, 35(2): 221-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgylzwxb201302019

    Zhao Y, Sha W, Jin Z M, et al. Expression pattern of soybean class Ⅲ acidic endochitinase gene and promoter[J]. Chinese Journal of Oil Crop Sciences, 2013, 35(2): 221-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgylzwxb201302019
    [30]
    Knecht K, Seyffarth M, Desel C, et al. Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi[J]. Molecular Plant-microbe Interactions: MPMI, 2010, 23(4):446. doi: 10.1094/MPMI-23-4-0446
    [31]
    Takeuchi Y, Akagi H, Kamasawa N, et al. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme[J]. Planta, 2000, 211(2):265-274. doi: 10.1007/s004250000282
    [32]
    Kotchoni S O, Kuhns C A, Ditzer A, et al. Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress[J]. Plant Cell & Environment, 2006, 29(6):1033-1048. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=828bf0a5f3600f73c6a0e8fbd186aa6a
    [33]
    Herman P L, Ramberg H, Baack R D, et al. Formate dehydrogenase in Arabidopsis thaliana: overexpression and subcellular localization in leaves[J]. Plant Science, 2002, 163(6):1137-1145. doi: 10.1016/S0168-9452(02)00326-6
    [34]
    Bannatyne R M, Stringel G, Simpson J S. Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis[J]. Plant Cell, 2013, 25(12):5011-5029. doi: 10.1105/tpc.113.118992
    [35]
    Hu B, Liu B, Liu L, et al. Epigenetic control of Pollen Ole e 1 allergen and extensin family gene expression in Arabidopsis thaliana [J]. Acta Physiologiae Plantarum, 2014, 36(8):2203-2209. doi: 10.1007/s11738-014-1597-6
    [36]
    Swoboda I, Dang T C H, Heberle-bors E, et al. Expression of Bet v 1, the major birch pollen allergen, during anther development[J]. Protoplasma, 1995, 187(1):103-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c00be41d559fd369b94cc2ebb1d38d0
    [37]
    Chen T, Lin J.Combined proteomic and cytological analysis of Ca2+-calmodulinregulation in Picea meyeripollen tube growth[J]. Plant Physiology, 2008, 149 (2): 1111-1126. doi: 10.1104/pp.108.127514
    [38]
    Baltz R, Domon C, Pillay D T, et al. Characterization of a pollen-specific cDNA from sunflower encoding a zinc finger protein[J]. Plant Journal for Cell & Molecular Biology, 1992, 2 (5): 713-721. http://cn.bing.com/academic/profile?id=1a151c9f269cba536cba6af7dbed8f8f&encoded=0&v=paper_preview&mkt=zh-cn
    [39]
    Baltz R, Evrard J L, Domon C, et al. A LIM motif is present in a pollen-specific protein[J]. Plant Cell, 1992, 4 (12): 1465-1466. doi: 10.1105/tpc.4.12.1465
    [40]
    Pazhamala L T, Purohit S, Saxena R K, et al. Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation[J]. Journal of Experimental Botany, 2017, 68(8): 2037-2054. doi: 10.1093/jxb/erx010
    [41]
    Guo D, Chen F, Inoue K, et al. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin[J]. Plant Cell, 2001, 13(1):73-88. doi: 10.1105/tpc.13.1.73
    [42]
    Wu S, Yu Z, Wang F, et al. Cloning, characterization, and transformation of the phosphoethanolamine N-methyltransferase gene (ZmPEAMT1) in maize (Zea mays L.)[J]. Molecular Biotechnology, 2007, 36(2):102-112. doi: 10.1007/s12033-007-0009-1
    [43]
    Luo M, Tan K, Xiao Z, et al. Cloning and expression of two sterol C-24 methyltransferase genes from upland cotton (Gossypium hirsuturm L.)[J]. Journal of Genetics and Genomics, 2008, 35(6):357-363. doi: 10.1016/S1673-8527(08)60052-1
  • Related Articles

    [1]Qi Yongliang, Ke Meng, Wu Zhiyong, Si Huayu, Liu Kelin, Yue Han, Sun Yuhan, Li Yun. Dynamics of female flower and seed growth and development in Quercus dentata[J]. Journal of Beijing Forestry University, 2024, 46(3): 17-26. DOI: 10.12171/j.1000-1522.20220505
    [2]Li Tongtong, Guo Sujuan, Li Yanhua, Jiang Xibing. Identification of chestnut varieties based on digital analysis of nut morphology[J]. Journal of Beijing Forestry University, 2023, 45(11): 78-89. DOI: 10.12171/j.1000-1522.20220284
    [3]Chen Yuqing, Du Bingshuai, Wang Shengnan, Cao Yibo, Yuan Deyi, Zhang Lingyun. Histological characteristics and related gene expression analysis of ovule abortion in Camellia oleifera[J]. Journal of Beijing Forestry University, 2023, 45(9): 9-20. DOI: 10.12171/j.1000-1522.20220182
    [4]Li Zhiqun, Kong Bo, Cheng Xuetong, Li Liang, Zhang Pingdong. Cytological mechanism of pollen abortion induced by high temperature in Populus canescens[J]. Journal of Beijing Forestry University, 2023, 45(5): 25-34. DOI: 10.12171/j.1000-1522.20210498
    [5]Liu Ningwei, Wang Lu, Zhang Zhiyong, Zhang Shuhang, Zhang Qing, Wang Guangpeng, Qin Ling, Cao Qingqin. Analysis of inherited tendency of fruit characteristics in F1 group of reciprocal crossing between ‘Yanshanzaofeng’ and ‘Yanjing’ in Castanea mollissima[J]. Journal of Beijing Forestry University, 2021, 43(5): 75-85. DOI: 10.12171/j.1000-1522.20200312
    [6]Wang Yi, Qiu Tong, Han Qiang, Kang Xiangyang. Comparative proteomics of two Populus spp.(Section Tacamahaca) allotriploid derived by different types of 2n female gamete and their parents[J]. Journal of Beijing Forestry University, 2018, 40(5): 1-9. DOI: 10.13332/j.1000-1522.20170425
    [7]CHEN Yu-shu, XIAO Yu-hong.. Impact of embedded nut on the joint property of eccentric fittings.[J]. Journal of Beijing Forestry University, 2016, 38(9): 87-94. DOI: 10.13332/j.1000-1522.20160049
    [8]SONG Xiao-bo, 2, ZHANG Jun-pei, XU Hui-min, XU Hu-zhi, PEI Dong. Cultivation mode of walnut in hilly area for nut and timber uses[J]. Journal of Beijing Forestry University, 2016, 38(6): 60-66. DOI: 10.13332/j.1000-1522.20160108
    [9]CHEN Yan, CHEN Jin-yong, LIU Yan, ZHAO Shi-wei. Anatomical study on seed abortion of Syringa villosa under cultivated conditions[J]. Journal of Beijing Forestry University, 2012, 34(6): 107-114.
    [10]CAO Yuan, KANG Xiang-yang, ZHANG Zhi-yi, JING Yan-ping. Anomalous changes in Ca2+ATPase distribution during the process of pollen abortion in Populus tomentosa Carr.[J]. Journal of Beijing Forestry University, 2012, 34(4): 10-17.
  • Cited by

    Periodical cited type(4)

    1. 王浩东,陈梦,袁丛军,何爽,丁访军,杨瑞. 马尾松纯林阔叶化改造对土壤碳氮固持的短期效应. 中南林业科技大学学报. 2024(10): 126-137 .
    2. 于晶晶,丛微,丁易,靳利晓,张于光. 不同干扰方式下热带雨林土壤微生物群落自然恢复特征和构建机制. 生态学杂志. 2023(03): 534-543 .
    3. 慕德宇,孙举永,谢经霞,王燕,慕宗昭. 山东生态造林项目植物配置与景观效果评价. 山东建筑大学学报. 2021(02): 61-68 .
    4. 骆丹,王春胜,刀保辉,赵志刚,郭俊杰,曾杰. 云南德宏州西南桦天然林物种组成及多样性研究. 林业科学研究. 2021(05): 159-167 .

    Other cited types(4)

Catalog

    Article views (4306) PDF downloads (71) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return