Citation: | Cai Mengke, Han Hairong, Cheng Xiaoqin, Jing Hongyuan, Liu Li, Peng Xinhao, Shang Tianxiong. Characteristics of soil microbial community structure with different plantation ages in larch forest in Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 86-93. DOI: 10.12171/j.1000-1522.20210132 |
[1] |
陈岳民, 高金涛, 熊德成, 等. 土壤增温对中亚热带杉木幼林土壤微生物群落结构和有效氮的影响[J]. 亚热带资源与环境学报, 2016, 11(4): 1−8. doi: 10.3969/j.issn.1673-7105.2016.04.001
Chen Y M, Gao J T, Xiong D C, et al. Effects of soil warming on soil microbial community structure and soil available nitrogen in subtropical young Chinese fir plantation[J]. Journal of Subtropical Resources and Environment, 2016, 11(4): 1−8. doi: 10.3969/j.issn.1673-7105.2016.04.001
|
[2] |
罗达, 刘顺, 史作民, 等. 川西亚高山不同林龄云杉人工林土壤微生物群落结构[J]. 应用生态学报, 2017, 28(2): 519−527.
Luo D, Liu S, Shi Z M, et al. Soil microbial community structure in Picea asperata plantations with different ages in subalpine of western Sichuan, Southwest China[J]. Chinese Journal of Ecology, 2017, 28(2): 519−527.
|
[3] |
Cui Y, Fang L, Guo X, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China[J]. Soil Biology & Biochemistry, 2018, 116: 11−21.
|
[4] |
Liu J, Yang Z, Peng D. Response of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the Loess Plateau: a chronosequence approach[J]. Plant and Soil, 2018, 423: 327−338. doi: 10.1007/s11104-017-3516-2
|
[5] |
Dang P, Gao Y, Liu J, et al. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau[J]. Science of the Total Environment, 2018, 630: 171−180. doi: 10.1016/j.scitotenv.2018.02.197
|
[6] |
姜懿珊, 肖静, 罗春玲, 等. 平顶山、长白山、赛罕乌拉森林土壤微生物群落结构分析[J]. 生态环境学报, 2014, 23(8): 1272−1279. doi: 10.3969/j.issn.1674-5906.2014.08.004
Jiang Y S, Xiao J, Luo C L, et al. The microbial community of three mountains Pingding, Changbai and Saihanwula based on the analysis of phospholipid fatty acids (PLFAs)[J]. Ecology and Environmental Sciences, 2014, 23(8): 1272−1279. doi: 10.3969/j.issn.1674-5906.2014.08.004
|
[7] |
Chen Y L, Chen L Y, Peng Y F, et al. Linking microbial C∶N∶P stoichiometry to microbial community and abiotic factors along a 3500-km grassland transect on the Tibetan Plateau[J]. Global Ecology Biogeography, 2016, 25: 1416−1427. doi: 10.1111/geb.12500
|
[8] |
Grayston S J, Prescott C E. Microbial communities in forest floors under four tree species in coastal British Columbia[J]. Soil Biology & Biochemistry, 2005, 37(6): 1157−1167.
|
[9] |
Kim S, Li G, Han S H, et al. Thinning affects microbial biomass without changing enzyme activity in the soil of Pinus densiflora Sieb. et Zucc. forests after 7 years[J]. Annals of Forest Science, 2018, 75(1): 13. doi: 10.1007/s13595-018-0690-1
|
[10] |
杨君珑, 付晓莉, 马泽清, 等. 中亚热带5种类型森林土壤微生物群落特征[J]. 环境科学学报, 2015, 28(5): 720−727.
Yang J L, Fu X L, Ma Z Q, et al. Characteristics of soil microbial community in five forest types in mid-subtropical China[J]. Research of Environmental Sciences, 2015, 28(5): 720−727.
|
[11] |
Li Q, Song X, Gu H, et al. Nitrogen deposition and management practices increase soil microbial biomass carbon but decrease diversity in Moso bamboo plantations[J]. Scientific Reports, 2016, 6: 28235. doi: 10.1038/srep28235
|
[12] |
Liu J, Sui Y, Yu Z, et al. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China[J]. Soil Biology & Biochemistry, 2016, 95: 212−222.
|
[13] |
Qiu X C, Peng D L, Wang H B, et al. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China[J]. Ecological Indicators, 2019, 103: 236−247. doi: 10.1016/j.ecolind.2019.04.010
|
[14] |
Yang B, Pang X, Hu B, et al. Does thinning-induced gap size result in altered soil microbial community in pine plantation in eastern Tibetan Plateau?[J]. Ecology and Evolution, 2017, 7(9): 2986−2993. doi: 10.1002/ece3.2714
|
[15] |
Ren C, Zhao F, Kang D, et al. Linkages of C∶N∶P stoichiometry and bacterial community in soil following afforestation of former farmland[J]. Forest Ecology and Management, 2016, 376: 59−66. doi: 10.1016/j.foreco.2016.06.004
|
[16] |
Sorensen P O, Templer P H, Finzi A C. Contrasting effects of winter snowpack and soil frost on growing season microbial biomass and enzyme activity in two mixed-hardwood forests[J]. Biogeochemistry, 2016, 128: 141−154. doi: 10.1007/s10533-016-0199-3
|
[17] |
马祥庆. 人工林地力衰退研究综述[J]. 南京林业大学学报(自然科学版), 1997, 21(2): 77−82.
Ma X Q. Review on the decline of plantation capacity[J]. Journal of Nanjing Forestry University (Natural Sciences), 1997, 21(2): 77−82.
|
[18] |
Urbanová M, Anajdr J, Baldrian P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil Biology & Biochemistry, 2015, 84: 53−64.
|
[19] |
王玲玲, 徐福利, 王渭玲, 等. 不同林龄华北落叶松人工林土壤肥力评价[J]. 西南林业大学学报, 2016, 35(2): 17−24.
Wang L L, Xu F L, Wang W L, et al. Assessment of soil fertility in different aged Larix principis-rupprechtii plantation[J]. Journal of Southwest Forestry University, 2016, 35(2): 17−24.
|
[20] |
周霆, 盛炜彤. 关于我国人工林可持续问题[J]. 世界林业研究, 2008, 21(3): 49−53.
Zhou T, Sheng W T. On the plantation sustainability in China[J]. World Forestry Research, 2008, 21(3): 49−53.
|
[21] |
Zhang J, Li M, Zheng G. Effect of stand age on soil microbial community structure in wolfberry (Lycium barbarum L.) fields[J]. Acta Ecologica Sinica, 2017, 37(1): 10−17. doi: 10.1016/j.chnaes.2016.12.003
|
[22] |
Zhang L, Wang J, Bai Z, et al. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area[J]. Catena, 2015, 128: 44−53. doi: 10.1016/j.catena.2015.01.016
|
[23] |
Zhou L, Cai L, He Z, et al. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China[J]. Environmental Science and Pollution Research, 2016, 23: 24135−24150. doi: 10.1007/s11356-016-7624-y
|
[24] |
Zhao W P, Shen W J, Li Y E, et al. Interactive effects of temperature and moisture on composition of the soil microbial community[J]. European Journal of Soil Science, 2017, 68: 909−918. doi: 10.1111/ejss.12488
|
[25] |
巫文香. 人工纯林和混交林植物、土壤微生物多样性与生态系统功能性[D]. 南宁: 广西大学, 2019.
Wu W X. Plant diversity, soil microbial diversity and ecosystem multifunction in pure and mixed plantations[D]. Nanning: Guangxi University, 2019.
|
[26] |
国家林业局. 中华人民共和国林业行业标准−森林土壤分析方法[M]. 北京: 中国标准出版社, 2000.
State Forestry Administration. Forestry industry standard of the people ’s Republic of China: forest soil analysis method[M]. Beijing: Standards Press of China, 2000.
|
[27] |
Fichtner A, von Oheimb G, Härdtle W, et al. Effects of anthropogenic disturbances on soil microbial communities in oak forests persist for more than 100 years[J]. Soil Biology & Biochemistry, 2014, 70: 79−87.
|
[28] |
Kourtev P S, Ehrenfeld J G, Häggblom M. Exotic plant species alter the microbial community structure and function in the soil[J]. Ecology, 2002, 83: 3152−3166. doi: 10.1890/0012-9658(2002)083[3152:EPSATM]2.0.CO;2
|
[29] |
Bossio D A, Fleck J A, Scow K M, et al. Alteration of soil microbial communities and water quality in restored wetlands[J]. Soil Biology & Biochemistry, 2006, 38: 1223−1233.
|
[30] |
Gavazov K, Ingrisch J, Hasibeder R, et al. Winter ecology of a subalpine grassland: effects of snow removal on soil respiration, microbial structure and function[J]. Science of the Total Environment, 2017, 590–591: 316−324.
|
[31] |
Myers R T, Zak D R, White D C, et al. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems[J]. Soil Science Society of America Journal, 2001, 65: 359−367. doi: 10.2136/sssaj2001.652359x
|
[32] |
Brockett B F T, Prescott C E, Grayston S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology & Biochemistry, 2012, 44(1): 9−20.
|
[33] |
胡方伟. 退化马尾松森林恢复过程中群落结构与土壤微生物多样性研究[D]. 合肥: 安徽农业大学, 2020.
Hu F W. Research on community structure and soil microbial diversity during recovery process of degraded Masson pine (Pinus massoniana) forest[D]. Anhui: Anhui Agricultural University, 2020.
|
[34] |
Chen L L, Deng Q, Yuan Z Y, et al. Age-related C∶N∶P stoichiometry in two plantation forests in the Loess Plateau of China[J]. Ecologucal Engineering, 2018, 120: 14−22. doi: 10.1016/j.ecoleng.2018.05.021
|
[35] |
Liu Y, Fang Y, An S S. How C∶N∶P stoichiometry in soils and plants responds to succession in Robinia pseudoacacia forests on the Loess Plateau, China[J/OL]. Forest Ecology and Management, 2020, 475: 118394[2021−04−11]. https://doi.org/10.1016/j.foreco.2020.118394.
|
[36] |
Fu X, Yang F, Wang J, et al. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation[J]. Science of the Total Environment, 2015, 502: 280−286. doi: 10.1016/j.scitotenv.2014.09.018
|
[37] |
Zeng Q, Lal R, Chen Y, et al. Leaf and root ecological stoichiometry of Caragana korshinskii on the Loess Plateau of China in relation to plantation age[J/OL]. PLoS One, 2017, 12: e0168890 [2021−04−12]. https://doi.org/10.1371/journal.pone.0168890.
|
1. |
陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
![]() | |
2. |
陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
![]() | |
3. |
吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
![]() | |
4. |
吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
![]() | |
5. |
张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
![]() | |
6. |
韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
![]() | |
7. |
张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
![]() | |
8. |
刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
![]() | |
9. |
周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 .
![]() | |
10. |
郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 .
![]() | |
11. |
焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
![]() | |
12. |
洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
![]() | |
13. |
吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 .
![]() | |
14. |
李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
![]() | |
15. |
张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 .
![]() | |
16. |
陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
![]() | |
17. |
杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
![]() | |
18. |
王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
![]() | |
19. |
杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
![]() | |
20. |
钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 .
![]() | |
21. |
毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
![]() | |
22. |
张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .
![]() |