Citation: | Wei Qianchun, Liu Jianfeng, Guo Wei, Wang Hezhi, Xu Jiannan, Chao Bixiao, Chang Ermei. Inhibitors during cutting process of ancient Platycladus orientalis trees of different ages[J]. Journal of Beijing Forestry University, 2024, 46(11): 83-91. DOI: 10.12171/j.1000-1522.20230045 |
This paper explores the effects of endogenous inhibitors (such as phenolic acids and flavonoids) produced by ancient Platycladus orientalis trees of different ages on rooting during the cutting process, so as to provide a theoretical basis for improving the rooting rate of ancient P. orientalis cuttings.
The cuttings from 5-, 100-, 300-, and 700-year-old P. orientalis were used as experimental materials for cutting propagation. The effects of extracts from the cuttings of P. orientalis of different ages (5-, 100-, 300-, and 700-year-old) in March and June on the germination of cabbage seeds were studied, and the contents of phenolic acids and flavonoids in the cuttings were measured to compare the effects of phenolic acids and flavonoids produced during the rooting process of cuttings of P. orientalis trees of different ages from June on the rooting process. Screening different removal methods was to identify the optimal approach for eliminating inhibitors from 100-year-old P. orientalis cuttings.
(1) The rooting rates and root numbers of ancient P. orientalis trees (100-, 300-, and 700-year-old) were significantly lower than those of young P. orientalis trees (5-year-old ) (P < 0.05). (2) The inhibitory effects of extracts from 100-, 300-, and 700-year-old P. orientalis cuttings on cabbage seed germination in March were significantly higher than that in June (P < 0.05). As the ages of trees increased, the inhibitory effects of extracts of cuttings on inhibiting the germination of cabbage seeds increased. (3) The contents of phenolic acids and flavonoids in P. orientalis cuttings from June were generally low. In the experimental materials from March and June, the contents of rutin, salicylic acid, gallic acid, coumaric acid, and ferulic acid generally showed an increasing trend with the increase of age of P. orientalis. In the experimental materials from June, the phenolic acid and flavonoid contents of 5-, 100-, 300-, and 700-year-old P. orientalis cuttings showed an increasing trend with the development of rooting process. (4) Treating cuttings of ancient P. orientalis with 0.1% silver nitrate solution can promote the formation of adventitious roots, and treating them with 0.05% potassium permanganate solution can promote root development.
As the age of P. orientalis grows, the phenolic acid and flavonoid contents of cuttings increase, which have inhibitory effects on the formation of adventitious roots. However, treatment of P. orientalis cuttings with 0.1% silver nitrate or 0.05% potassium permanganate can effectively alleviate this inhibitory effect and improve the rooting rates of P. orientalis cuttings. The study provides theoretical basis and technical support for improving rooting rates.
[1] |
Chang E M, Tian Y X, Wang C Y, et al. Exploring the phylogeography of ancient Platycladus orientalis in China by specific-locus amplified fragment sequencing[J]. International Journal of Molecular Sciences, 2019, 20(16): 3871. doi: 10.3390/ijms20163871
|
[2] |
岳剑云, 杜常健, 纪敬, 等. 银杏枝条部位和年龄对不定根形成的影响及其与非结构碳水化合物含量的关系[J]. 林业科学研究, 2018, 31(5): 153−158.
Yue J Y, Du C J, Ji J, et al. Effects of different position and ages of twigs on cutting of Ginkgo biloba and its relationship with non-structural carbohydrates[J]. Forest Research, 2018, 31(5): 153−158.
|
[3] |
杜常健, 孙佳成, 陈炜, 等. 侧柏古树实生树和嫁接树的扦插生理和解剖特性比较[J]. 林业科学, 2019, 55(9): 41−49.
Du C J, Sun J C, Chen W, et al. Comparison of physiological and anatomical characteristics between seedlings and graftings derived from old Platycladus orientalis[J]. Scientia Silvae Sinicae, 2019, 55(9): 41−49.
|
[4] |
魏黔春, 江泽平, 刘建锋, 等. 侧柏古树扦插试验及插穗营养物质变化[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 63−71.
Wei Q C, Jiang Z P, Liu J F, et al. Effects of several factors on rooting of cutting propagation of ancient Platycladus orientalias and the changes of nutritive material[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1): 63−71.
|
[5] |
邹显花, 胡亚楠, 孙雪莲, 等. 基于非靶向代谢组学的沉水樟内源生根抑制物分析[J]. 林业科学研究, 2020, 33(5): 86−96.
Zou X H, Hu Y N, Sun X L, et al. Analysis of endogenous rooting inhibitors in Cinnamomum micranthum based on non-targeted metabolomics approach[J]. Forest Research, 2020, 33(5): 86−96.
|
[6] |
Schuler J L, McCarthy W. Development of eastern cottonwood cuttings as modified by cutting length and surface area available for rooting[J]. New Forests, 2015, 46: 547−559. doi: 10.1007/s11056-015-9482-8
|
[7] |
Trobec M, Štampar F, Veberič R, et al. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock ‘GiSelA 5’ leafy cuttings[J]. Journal of Plant Physiology, 2005, 162(5): 589−597. doi: 10.1016/j.jplph.2004.10.009
|
[8] |
Nicholls W, Crow W D, Paton D M. Chemistry and physiology of rooting inhibitors in adult tissue of Eucalyptus grandis[C]// Carr D J. Plant growth substances. Berlin: Springer, 1972: 324−329.
|
[9] |
麻文俊, 王军辉, 张守攻, 等. 日本落叶松无性系扦插生根过程中多酚类物质研究[J]. 北京林业大学学报, 2011, 33(1): 150−154.
Ma W J, Wang J H, Zhang S G, et al. Qualitative analysis of phenolic compounds in the Japanese larch during the rooting of cuttings[J]. Journal of Beijing Forestry University, 2011, 33(1): 150−154.
|
[10] |
季孔庶, 王章荣, 陈天华, 等. 马尾松插穗内源抑制物质的研究[J]. 林业科学, 1997, 33(2): 47−56.
Ji K S, Wang Z R, Chen T H, et al. Study on the endogenous inhibitors in masson pine (Pinus Massoniana Lamb.) cuttings[J]. Scientia Silvae Sinicae, 1997, 33(2): 47−56.
|
[11] |
程广有. 紫杉插穗中生根抑制物的鉴定[J]. 北华大学学报, 2000, 1(2): 163−166.
Cheng G Y. Determination of rooting-inhibitor in cutting of Taxus cuspidata[J]. Journal of Beihua University (Natural Science), 2000, 1(2): 163−166.
|
[12] |
徐程扬, 张忠辉, 李绍臣. 核桃楸枝条、插穗中生根抑制物质的含量[J]. 吉林林学院学报, 1998, 14(4): 28−31.
Xu C Y, Zhang Z H, Li S C. Dynamic state of rooting inhibitor in branches and cuttings of Juglans mandshurica[J]. Journal of Jilin Forestry University, 1998, 14(4): 28−31.
|
[13] |
魏黔春. 侧柏古树扦插繁殖技术与生根机理研究[D]. 北京: 中国林业科学研究院, 2015.
Wei Q C. Cutting propagation technique and rooting mechanism of old Platycladus orientalis[D]. Beijing: Chinese Academy of Forestry, 2015.
|
[14] |
林海球, 龙腾, 莫晓勇. 抗酚剂对桉树扦插生根的影响研究[J]. 林业科学研究, 2000, 13(1): 86−92.
Lin H Q, Long T, Mo X Y, et al. Study on the effects of antyphen on rooting of eucalyptus cuttings[J]. Forest Research, 2000, 13(1): 86−92.
|
[15] |
丁占发. 插穗生根的技术措施探讨[J]. 现代农业科技, 2012, 582(16): 197. doi: 10.3969/j.issn.1007-5739.2012.16.127
Ding Z F. Discussion on technical measures for rooting of cuttings[J]. Modern Agricultural Science and Technology, 2012, 582(16): 197. doi: 10.3969/j.issn.1007-5739.2012.16.127
|
[16] |
Chang E M, Zhang J, Deng N, et al. Transcriptome differences between 20- and 3, 000-year-old Platycladus orientalis reveal that ROS are involved in senescence regulation[J]. Electronic Journal of Biotechnology, 2017, 29: 68−77. doi: 10.1016/j.ejbt.2017.06.008
|
[17] |
Chang E M, Zhang J, Yao X M, et al. De novo characterization of the Platycladus orientalis transcriptome and analysis of photosynthesis-related genes during aging[J]. Forests, 2019, 10(5): 393. doi: 10.3390/f10050393
|
[18] |
杜常健, 孙佳成, 韩振泰, 等. 板栗扦插生根过程的解剖结构和生理变化研究[J]. 西北植物学报, 2019, 39(11): 1979−1987. doi: 10.7606/j.issn.1000-4025.2019.11.1979
Du C J, Sun J C, Han Z T, et al. Study on changes of anatomical structure and physiology during cuttings rooting of Castanea mollissima[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(11): 1979−1987. doi: 10.7606/j.issn.1000-4025.2019.11.1979
|
[19] |
廖静. 三种观赏植物水培机制与技术研究[D]. 雅安: 四川农业大学, 2006.
Liao J. Study on hydroponies theory and technology of three ornamentals[D]. Yaan: Sichuan Agricultural University, 2006.
|
[20] |
刘卫东, 周莹, 孙汉洲. 桉树扦插生根过程中抑制物的研究[J]. 经济林研究, 1998, 16(4): 16−19, 73.
Liu W D, Zhou Y, Sun H Z. Studies on the inhibitory substances in the rooting process of cuttage Eucalyptus[J]. Economic Forest Reseaches, 1998, 16(4): 16−19, 73.
|
[21] |
Faivre-Rampant O, Charpentier J P, Kevers C, et al. Cuttings of the non-rooting rac tobacco mutant overaccumulate phenolic compounds[J]. Functional Plant Biology, 2002, 29(1): 63−71. doi: 10.1071/PP01016
|
[22] |
Legué V, Rigal A, Bhalerao R P. Adventitious root formation in tree species: involvement of transcription factors[J]. Physiologia Plantarum, 2014, 151(2): 192−198. doi: 10.1111/ppl.12197
|
[23] |
Vermerris W, Nicholson R. Isolation and identification of phenolic compounds[M]// Phenolic compound biochemistry. Dordrecht: Springer , 2008: 151−196.
|
[24] |
Tarragó J, Filip R, Mroginski L, et al. Influence of the irradiance on phenols content and rooting of Ilex paraguariensis cuttings collected from adult plants[J]. Acta Physiologiae Plantarum, 2012, 34(6): 2419−2424. doi: 10.1007/s11738-012-1009-8
|
[25] |
黄雪梅, 蒙大平. 广西苦丁茶嫩叶和老叶中槲皮素和山柰素的含量测定[J]. 中国现代应用药学, 2005, 22(5): 32−34.
Huang X M, Meng D P. Determination of quercetin and kaempferol in the burgeon leaves and old leaves of Guangxi Kudingcha[J]. Chinese Journal of Modern Applied Pharmacy, 2005, 22(5): 32−34.
|
[26] |
Balakrishnamurthy G, Rao V N M. Changes in phenols during rhizogenesis in rose (Rosa bourboniana Desp)[J]. Current Science, 1988, 57(17): 960−962.
|
[27] |
李娜, 陈钧, 朱大元. 土壤微生物影响蛇足石杉扦插生根的机制研究[J]. 中国中药杂志, 2007, 32(23): 2478−2481.
Li N, Chen J, Zhu D Y. Mechanism of effects of soil microbes on cuttings rooting of Huperzia serrata[J]. China Journal of Chinese Materia Medica, 2007, 32(23): 2478−2481.
|
[28] |
魏树强. 杂交鹅掌楸扦插繁殖技术与生根机理研究[D]. 南京: 南京林业大学, 2009.
Wei S Q. Studies on the cutting propagation technology and rooting mechanism of Liriodendron chinese × L. tulipifera[D]. Nanjing: Nanjing Forestry University, 2009.
|
[29] |
李永进, 丁贵杰, 全红梅, 等. 插穗直径和洗脱处理对马尾松插穗生根的影响[J]. 中南林业科技大学学报, 2008, 91(1): 104−107.
Li Y J, Ding G J, Quan H M, et al. Effects of cutting diameter and different elution treatments on the rooting rate of Pinus massoniana[J]. Journal of Central South University of Forestry & Technology, 2008, 91(1): 104−107.
|
[1] | Wang Xin, Tong Xiaojuan, Zhang Jinsong, Meng Ping, Xie Han, Hu Haiyang, Li Jun. Effects of photosynthesis on soil respiration of Quercus variabilis plantation in southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 66-76. DOI: 10.12171/j.1000-1522.20200010 |
[2] | Ma Xiaodong, Li Xia, Liu Junxiang, Zhai Feifei, Sun Zhenyuan, Han Lei. Effects of Crucibulum laeve inoculation on photosynthesis of Salix viminalis cultivated in PAHs-contaminated soil[J]. Journal of Beijing Forestry University, 2020, 42(5): 80-87. DOI: 10.12171/j.1000-1522.20190340 |
[3] | Zhang Jiatong, Guan Yinghui, Si Liqing, Peng Xiawei, Meng Bingnan, Zhou Jinxing. Effects of Pb2+ and Cd2+ combined stress on photosynthesis of Morus alba[J]. Journal of Beijing Forestry University, 2018, 40(4): 16-23. DOI: 10.13332/j.1000-1522.20170332 |
[4] | SUN Yan-shuang, XING Bao-yue, YANG Guang, LIU Gui-feng. Effects of NaHCO3 stress on growth, photosynthesis and chlorophyll fluorescence characteristics in Populus davidiana × P. bolleana overexpressed TaLEA[J]. Journal of Beijing Forestry University, 2017, 39(10): 33-41. DOI: 10.13332/j.1000-1522.20170099 |
[5] | YANG Bo-wen, SUN Hai-long, WU Chu. Effects of phosphorus stress on photosynthesis and nitrogen assimilation of Fraxinus mandshurica seedlings[J]. Journal of Beijing Forestry University, 2015, 37(8): 18-23. DOI: 10.13332/j.1000-1522.20140417 |
[6] | ZHAO Juan, SONG Yuan, MAO Zi-jun. Response in photosynthesis and chlorophyll fluorescence of Quercus mongolica seedlings to the interaction of temperature and precipitation[J]. Journal of Beijing Forestry University, 2013, 35(1): 64-71. |
[7] | LIN Xia, ZHENG Jian, CHEN Qiu-xia, KONG Qiang, YE Yan-ling. Effects of NaCl stress on photosynthesis and antioxidant activity in Ficus concinna var. subsessilis[J]. Journal of Beijing Forestry University, 2011, 33(4): 70-74. |
[8] | ZHANG Peng-chong, HU Zeng-hui, SHEN Ying-bai, GAO Rong-fu. Effects of three types of wound on photosynthetic activity of Populus simonii × P. pyramidalis ‘Opera 8277’ seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 35-38. |
[9] | ZHAO Tian-hong, WANG Mei-yu, ZHAO Yi-xin, GUO Dan, HE Xing-yuan, FU Shi-lei. Effects of elevated atmospheric ozone concentration on photosynthetic mechanism of Pinus tabulaeformis Carr.[J]. Journal of Beijing Forestry University, 2009, 31(1): 31-36. |
[10] | ZHU Jiao-jun, KANG Hong-zhang, LI Zhi-hui. Comparison of different types of drought stresses affecting photosynthesis of Mongolian pine seedlings on sandy soils[J]. Journal of Beijing Forestry University, 2006, 28(2): 57-63. |
1. |
李捷,孙文涛,庞晓攀,徐雪婷,杨欢,郭正刚. 高原鼠兔干扰对高寒草甸植物物种和功能性状beta多样性的影响. 生态学报. 2024(07): 2993-3003 .
![]() | |
2. |
尹才佳,马龙,邹书珍,康迪. 地震滑坡体恢复后植物β多样性格局及其环境响应. 西北植物学报. 2023(02): 316-325 .
![]() | |
3. |
陈瑶,余雯静,陈珑,郭汝凤,吴承祯,李键. 基于同质园的不同品种茶树叶性状变异及经济谱. 应用与环境生物学报. 2023(03): 720-729 .
![]() | |
4. |
Jianghao ZHAO,Yingying LIU,Xiaoguo BAI,Anping LI,Yanjiao LI,Shiping CHENG,Guang QI. Phylogenetic Structure of Low Altitude Forest Communities in Baotianman Mountain. Asian Agricultural Research. 2022(06): 31-36 .
![]() |
|
5. |
王健铭,曲梦君,王寅,冯益明,吴波,卢琦,何念鹏,李景文. 青藏高原北部戈壁植物群落物种、功能与系统发育β多样性分布格局及其影响因素. 生物多样性. 2022(06): 62-75 .
![]() | |
6. |
杨欢,王寅,王健铭,夏延国,李景文,贾晓红,吴波. 环境过滤和扩散限制对库姆塔格沙漠南缘植物群落β-多样性的影响. 中国沙漠. 2021(03): 147-154 .
![]() | |
7. |
高辉,刘丽娟,方江平. 西藏色季拉山森林群落沿海拔梯度变化格局. 广西师范大学学报(自然科学版). 2020(06): 122-130 .
![]() | |
8. |
周昌艳,王彬,邓云,乌俊杰,曹敏,林露湘. 林冠结构是局域尺度木本植物功能性状beta多样性形成的重要驱动力. 生物多样性. 2020(12): 1546-1557 .
![]() | |
9. |
庞志强,姜丽莎,缪祥蓉,亓峥,卢炜丽. 昆明市主要园林植物叶性状及叶经济谱研究. 西南林业大学学报(自然科学). 2019(04): 53-60 .
![]() | |
10. |
刘丽杰,尹航,金慧,赵莹,贾翔. 基于生态文明视角下长白山生物多样性保护研究探索. 吉林农业. 2018(04): 97 .
![]() | |
11. |
朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 .
![]() |