• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Depeng, Xu Fangze, Sun Hailong, Chen Meiqing, Xiang Wei. Comparison of methods for dividing developmental stages of natural mixed forest stands[J]. Journal of Beijing Forestry University, 2024, 46(7): 139-152. DOI: 10.12171/j.1000-1522.20230174
Citation: Xu Depeng, Xu Fangze, Sun Hailong, Chen Meiqing, Xiang Wei. Comparison of methods for dividing developmental stages of natural mixed forest stands[J]. Journal of Beijing Forestry University, 2024, 46(7): 139-152. DOI: 10.12171/j.1000-1522.20230174

Comparison of methods for dividing developmental stages of natural mixed forest stands

More Information
  • Received Date: July 05, 2023
  • Revised Date: August 05, 2023
  • Accepted Date: November 17, 2023
  • Available Online: November 21, 2023
  • Objective 

    Taking the Changbai Mountain spruce coniferous mixed forest as an example, this study compared the methods for dividing different stages of forest development and determined the most suitable method for dividing the development stages of Changbai Mountain spruce coniferous mixed forest, aiming to develop targeted forest management strategies for different stages of development and provide a methodological basis for the scientific division of natural forest development stages.

    Method 

    A total of 2 589 plot samples were divided by interspecies linkage-optimal segmentation method (A), forest facies characteristic discrimination method (B), TWINSPAN bidirectional indicator species analysis method (C), MRT multiple regression tree method (D), and TWINSPAN-based discriminant analysis method (E) of Jingouling Forest Farm of Wangqing Forestry Bureau of Jilin Province, northeastern China. Multiple comparisons were used to verify whether there were significant differences between different stages of stand development, and the anastomosis coefficient was used to compare the anastomosis between the classification results of different methods, and finally the classification results of five methods were compared from the aspects of tree species composition and stand characteristics.

    Result 

    The results of multiple comparisons showed that the nine numerical indicators used to describe the characteristics of forest stands in this paper basically had significant differences between different stages of stand development, indicating that the results were more reliable. Method D and E had the highest anastomosis coefficient, indicating that the division results were more consistent, while method B had a low agreement with other methods. From the perspective of development trend of the stand, the results of each method are roughly the same. As the forest gradually developed, the forest characteristic indicators increased, the diversity indicators decreased, and the tree species composition tended to be simpler. The differences were mainly reflected in the number of hectares and tree species composition indicators, and in the division results of different methods, the degree of difference between the indicators and the sample size of each stage were also different. From the specific analysis of various aspects, the division results of method E were more in line with the growth and development law of stands. In the first stage, a mixed spruce and fir coniferous forest was formed, and the forest grew rapidly. In the second stage, competition between trees intensified, and individual differentiation was significant. In the third stage, the forest was classified as a near natural forest, which was the target state of forest management.

    Conclusion 

    The discriminant analysis method based on TWINSPAN can better divide the developmental stage of forest stands, and divide the development process of Changbai Mountain spruce-fir-coniferous mixed forest into group establishment stage, competition stage and near-natural forest stage, which provides an important theoretical basis for forest scientific management.

  • [1]
    沈国舫. 森林培育学[M]. 北京: 中国林业出版社, 2001.

    Shen G F. Silviculture[M]. Beijing: China Forestry Publishing House, 2001.
    [2]
    温远光, 元昌安, 李信贤, 等. 大明山中山植被恢复过程植物物种多样性的变化[J]. 植物生态学报, 1998, 22(1): 34−41.

    Wen Y G, Yuan C A, Li X X, et al. Changes of plant species diversity during vegetation restoration in the middle mountains of Daming Mountain[J]. Chinese Journal of Plant Ecology, 1998, 22(1): 34−41.
    [3]
    National Research Council. People and pixels: linking remote sensing and social science[M]. Washington: National Academies Press, 1998.
    [4]
    Saldarriaga J G, West D C, Tharp M L, et al. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela[J]. Journal of Ecology, 1988, 76(4): 938−958.
    [5]
    Uhl C, Buschbacher R, Serrao E A S. Abandoned pastures in eastern Amazonia (Ⅰ): patterns of plant succession[J]. The Journal of Ecology, 1988, 76(1): 663−681.
    [6]
    Moran E F, Brondizio E S, Tucker J M, et al. Effects of soil fertility and land-use on forest succession in Amazonia[J]. Forest Ecology and Management, 2000, 139(1−3): 93−108. doi: 10.1016/S0378-1127(99)00337-0
    [7]
    Goodell L, Faber-Langendoen D. Development of stand structural stage indices to characterize forest condition in Upstate New York[J]. Forest Ecology and Management, 2007, 249(3): 158−170. doi: 10.1016/j.foreco.2007.04.052
    [8]
    Podlaski R. Suitability of the selected statistical distributions for fitting diameter data in distinguished development stages and phases of near-natural mixed forests in the Świętokrzyski National Park (Poland)[J]. Forest Ecology and Management, 2006, 236(2−3): 393−402. doi: 10.1016/j.foreco.2006.09.032
    [9]
    Feldmann E, Glatthorn J, Hauck M, et al. A novel empirical approach for determining the extension of forest development stages in temperate old-growth forests[J]. European Journal of Forest Research, 2018, 137(3): 321−335. doi: 10.1007/s10342-018-1105-4
    [10]
    Zeller L, Pretzsch H. Effect of forest structure on stand productivity in Central European forests depends on developmental stage and tree species diversity[J]. Forest Ecology and Management, 2019, 434: 193−204. doi: 10.1016/j.foreco.2018.12.024
    [11]
    张家来. 应用最优分割法划分森林群落演替阶段的研究[J]. 植物生态学与地植物学学报, 1993, 17(3): 34−41, 100−101.

    Zhang J L. Study on the application of optimal segmentation method to divide forest community succession stages[J]. Journal of Plant Ecology and Geobotany, 1993, 17(3): 34−41, 100−101.
    [12]
    马姜明, 刘世荣, 史作民,等. 川西亚高山暗针叶林恢复过程中不同恢复阶段的定量分析[J]. 应用生态学报, 2007, 18(8): 1695−1701.

    Ma J M, Liu S R, Shi Z M, et al. Quantitative analysis of different restoration stages during the restoration of alpine dark coniferous forest in western Sichuan[J]. Chinese Journal of Applied Ecology, 2007, 18(8): 1695−1701.
    [13]
    余树全. 浙江淳安天然次生林演替的定量研究[J]. 林业科学, 2003, 39(1): 17−22.

    Yu S Q. Quantitative study on succession of natural secondary forest in Chun’an, Zhejiang Province[J]. Forestry Science, 2003, 39(1): 17−22.
    [14]
    龚直文. 长白山退化云冷杉林演替动态及恢复研究[D]. 北京: 北京林业大学, 2009.

    Gong Z W. Study on succession dynamics and restoration of degraded spruce forest in Changbai Mountain[D]. Beijing: Beijing Forestry University, 2009.
    [15]
    唐守正. 多元统计分析方法[M]. 北京: 中国林业出版社, 1984: 238−249.

    Tang S Z. Multivariate statistical analysis method[M]. Beijing: China Forestry Publishing House, 1984: 238−249.
    [16]
    Lu D, Mausel P, Brondızio E, et al. Classification of successional forest stages in the Brazilian Amazon basin[J]. Forest Ecology and Management, 2003, 181(3): 301−312. doi: 10.1016/S0378-1127(03)00003-3
    [17]
    李婷婷, 陆元昌, 张显强,等. 经营的马尾松森林类型发育演替阶段量化指标研究[J]. 北京林业大学学报, 2014, 36(3): 9−17. doi: 10.13332/j.cnki.jbfu.2014.03.002

    Li T T, Lu Y C, Zhang X Q, et al. Quantitative indices to identify succession stages of managed Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2014, 36(3): 9−17. doi: 10.13332/j.cnki.jbfu.2014.03.002
    [18]
    周梦丽, 雷相东, 国红,等. 基于TWINSPAN分类的天然云冷杉−阔叶混交林发育阶段划分[J]. 林业科学研究, 2019, 32(3): 49−55. doi: 10.13275/j.cnki.lykxyj.2019.03.007

    Zhou M L, Lei X D, Guo H, et al. Developmental stage division of natural spruce-broadleaf mixed forest based on TWINSPAN classification[J]. Forest Research, 2019, 32(3): 49−55. doi: 10.13275/j.cnki.lykxyj.2019.03.007
    [19]
    张会儒, 汤孟平. 金沟岭林场混交林TWINSPAN分类及演替序列分析[J]. 南京林业大学学报(自然科学版), 2009, 33(1): 37−42.

    Zhang H R, Tang M P. TWINSPAN classification and succession sequence analysis of mixed forest in Jingouling Forest Farm[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2009, 33(1): 37−42.
    [20]
    张金屯. 植被数量生态学方法[M]. 北京: 科学出版社, 1995.

    Zhang J T. Quantitative ecological method of vegetation[M]. Beijing: Science Press, 1995.
    [21]
    赖江山, 米湘成, 任海保,等. 基于多元回归树的常绿阔叶林群丛数量分类: 以古田山24公顷森林样地为例[J]. 植物生态学报, 2010, 34(7): 761−769.

    Lai J S, Mi X C, Ren H B, et al. Classification of evergreen broad-leaved forest cluster based on multiple regression trees: a case study of 24 hectares of forest plot in Gutianshan[J]. Chinese Journal of Plant Ecology, 2010, 34(7): 761−769.
    [22]
    Zenner E K, Sagheb-Talebi K, Akhavan R, et al. Integration of small-scale canopy dynamics smoothes live-tree structural complexity across development stages in old-growth Oriental beech (Fagus orientalis Lipsky) forests at the multi-gap scale[J]. Forest Ecology and Management, 2015, 335: 26−36. doi: 10.1016/j.foreco.2014.09.023
    [23]
    颜攀. 基于近自然林经营的鲁南山地侧柏人工林经营模型构建与营林效果评价[D]. 泰安: 山东农业大学, 2020.

    Yan P. Construction of management model and evaluation of forestry effect of Lunan Mountain cypress plantation based on near-natural forest management[D]. Tai’an: Shandong Agricultural University, 2020.
    [24]
    周超凡, 冯林艳, 何潇,等. 目标树经营对云冷杉针阔混交林单木生长的影响研究[J]. 林业科学研究, 2022, 35(2): 19−27. doi: 10.13275/j.cnki.lykxyj.2022.02.003

    Zhou C F, Feng L Y, He X, et al. Effects of target tree management on single growth of spruce coniferous and broad-leaved mixed forest[J]. Forest Research, 2022, 35(2): 19−27. doi: 10.13275/j.cnki.lykxyj.2022.02.003
    [25]
    Greig-Smith P. Quantitative plant ecology[M]. Los Angeles: University of California Press, 1983.
    [26]
    王伯荪, 彭少麟. 南亚热带常绿阔叶林种间联结测定技术研究——Ⅰ. 种间联结测式的探讨与修正[J]. 植物生态学与地植物学丛刊, 1985(4): 274−285.

    Wang B S, Peng S L. Study on interspecific linkage measurement technology of tropical evergreen broad-leaved forest in South Asia (Ⅰ): discussion and correction of interspecific linkage measurement pattern[J]. Plant Ecology and Geobotany Series, 1985(4): 274−285.
    [27]
    潘紫重, 应天玉, 赵艳霞. 帽儿山复层异龄天然林的林龄结构[J]. 东北林业大学学报, 2008, 36(6): 9−12.

    Pan Z C, Ying T Y, Zhao Y X. Forest age structure of multi-layered heterogeneous natural forest in Maoershan[J]. Journal of Northeast Forestry University, 2008, 36(6): 9−12.
    [28]
    胡云云, 亢新刚, 赵俊卉. 长白山地区天然林林木年龄与胸径的变动关系[J]. 东北林业大学学报, 2009, 37(11): 38−42.

    Hu Y Y, Kang X G, Zhao J H. Relationship between age and breast diameter of natural forest in Changbai Mountain[J]. Journal of Northeast Forestry University, 2009, 37(11): 38−42.
    [29]
    尹艳豹, 唐守正, 郎璞梅,等. 多回波机载LiDAR数据提取林地DEM的判别分析方法[J]. 林业科学, 2011, 47(12): 106−113.

    Yin Y B, Tang S Z, Lang P M, et al. Discriminant analysis method of multi-echo airborne LiDAR data extraction from forest land DEM[J]. Forestry Science, 2011, 47(12): 106−113.
    [30]
    Hill M O. A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes[Z/OL]. Twinspan, 1979[2023−03−19]. https://github.com/jarioksa/twinspan/blob/master/README.md.
    [31]
    Dufrene M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach[J]. Ecological Monographs, 1997, 67(3):345−366.
    [32]
    Roleček J, Tichý L, Zelený D, et al. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity[J]. Journal of Vegetation Science, 2009, 20(4): 596−602. doi: 10.1111/j.1654-1103.2009.01062.x
    [33]
    De’ath G. Multivarlate regression trees: a new technique for modeling species–environment relationships[J]. Ecology, 2002, 83: 1105−1117.
    [34]
    De’ath G, Fabricius K E. Classification and regression trees: a powerful yet simple technique for ecological data analysis[J]. Ecology, 2000, 81: 3178−3192. doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
    [35]
    薛茜, 刘万里, 尔西丁, 等. 常用多重比较方法[J]. 中国医院统计, 2008(1): 29−31.

    Xue Q, Liu W L, Erxiding, et al. Common multiple comparison methods[J]. China Hospital Statistics, 2008(1): 29−31.
    [36]
    张文静, 张钦弟, 王晶,等. 多元回归树与双向指示种分析在群落分类中的应用比较[J]. 植物生态学报, 2015, 39(6): 586−592. doi: 10.17521/cjpe.2015.0056

    Zhang W J, Zhang Q D, Wang J, et al. Comparison of multiple regression tree and bidirectional indicator species analysis in community classification[J]. Chinese Journal of Plant Ecology, 2015, 39(6): 586−592. doi: 10.17521/cjpe.2015.0056
    [37]
    张金屯. 模糊C-均值聚类和TWINSPAN分类的比较研究[J]. 武汉植物学研究, 1994(1): 11−17.

    Zhang J T. Comparative study of fuzzy C-means clustering and TWINSPAN classification[J]. Wuhan Botanical Research, 1994(1): 11−17.
    [38]
    De’ath G. Multivariate regression trees: a new technique for modeling species-environment relationships[J]. Ecology, 2002, 83(4): 1105−1117.
    [39]
    Král K, Vrška T, Hort L, et al. Developmental phases in a temperate natural spruce-fir-beech forest: determination by a supervised classification method[J]. European Journal of Forest Research, 2010, 129(3): 339−351. doi: 10.1007/s10342-009-0340-0
    [40]
    张金屯. 数量生态学[M]. 北京: 科学出版社, 2004.

    Zhang J T. Quantitative ecology[M]. Beijing: Science Press, 2004.
    [41]
    Lu D. Estimation of forest stand parameters and application in classification and change detection of forest cover types in the Brazilian Amazon Basin[M]. Terre Haute: Indiana State University, 2001.
    [42]
    Foody G M, Palubinskas G, Lucas R M, et al. Identifying terrestrial carbon sinks: classification of successional stages in regenerating tropical forest from Landsat TM data[J]. Remote Sensing of Environment, 1996, 55(3): 205−216. doi: 10.1016/S0034-4257(95)00196-4
  • Related Articles

    [1]Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188
    [2]Jiang Jun, Chen Changqi, Chen Beibei, Wang Hao, Hu Dongyang, Zhang Yong, Zhang Yongfu, Li Jie, Zheng Junpeng. Effects of stand density on carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption of Platycladus orientalis plantations in rocky mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(10): 33-41. DOI: 10.12171/j.1000-1522.20240011
    [3]Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Liu Ting. Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China[J]. Journal of Beijing Forestry University, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171
    [4]Lu Dongxu, Geng Xueqi, Cui Ziyi, Wang Shiyu, Wang Lina, Yu Yongqiang, Tang Yakun. Nutrient utilization characteristics and stand quality of Robinia pseudoacacia at different stand ages in the loess hilly region of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(12): 90-99. DOI: 10.12171/j.1000-1522.20230058
    [5]Wang Ziming, Zhao Mingming, Ren Yunmao, Zhan Jiping, Li Zhiyao, Yu Lixin, Yu Qingjun, Jia Zhongkui. Response of growth and soil properties of Chinese pine building timber forest at felling age to stand density[J]. Journal of Beijing Forestry University, 2022, 44(12): 88-101. DOI: 10.12171/j.1000-1522.20210442
    [6]Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122
    [7]Wang Yansong, Ma Baoming, Gao Haiping, Wang Baitian, Li Sha, Dong Xiuqun. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81-93. DOI: 10.12171/j.1000-1522.20190287
    [8]Jin Suo, Bi Haojie, Liu Jia, Liu Yuhang, Wang Yu, Qi Jinqiu, Hao Jianfeng. Effects of stand density on community structure and species diversity of Cupressus funebris plantation in Yunding Mountain, southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 10-17. DOI: 10.12171/j.1000-1522.20190202
    [9]Liu Kai, He Kang-ning, Wang Xian-bang. Hydrological effects of litter of Betula platyphylla forest with different densities in alpine region, Qinghai of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 89-97. DOI: 10.13332/j.1000-1522.20170225
    [10]XU Cheng-yang, ZHANG Hua, JIA Zhong-kui, XUE Kang, DU Peng-zhi, WANG Jing-guo. Effects of stand density and site types on root characteristics of Platycladus orientalis plantations in Beijing mountainous area[J]. Journal of Beijing Forestry University, 2007, 29(4): 95-99. DOI: 10.13332/j.1000-1522.2007.04.022
  • Other Related Supplements

  • Cited by

    Periodical cited type(8)

    1. 张慧,燕怡帆,朱雅,陈玉婷,王菁华,崔志鹏,杨迪,任学敏. 林分密度对伏牛山南麓山茱萸人工林林下草本植物多样性和土壤性质的影响. 西南林业大学学报(自然科学). 2025(01): 96-105 .
    2. 赵金同,马俊. 刺槐扦插育苗技术与精细抚育要点. 现代园艺. 2024(08): 49-51 .
    3. 何欢,康必均,尹婧,李菲,彭栋,李桂静,查同刚. 不同营林措施对川东华蓥山杉木林土壤团聚体稳定性及细根分布的影响. 土壤通报. 2024(02): 351-359 .
    4. 史小鹏,苟贺然,何淑勤,刘柏廷,冉兰芳,杨琪琳,扎西拉姆,陈雨馨,骆紫藤. 成都市温江区两种绿地土壤抗蚀抗冲性及其影响因素. 水土保持通报. 2024(04): 117-125 .
    5. 刘忆南,申振宏,都都,张知然,林勇明. 蒋家沟泥石流堆积扇不同植被类型区土壤抗蚀性评价. 应用与环境生物学报. 2024(05): 886-893 .
    6. 王依瑞,王彦辉,段文标,李平平,于澎涛,甄理,李志鑫,尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报. 2023(02): 305-314 .
    7. 赵云鹤,钟鹏,高晗,付玉. 土地利用类型对典型黑土团聚体稳定性和抗蚀性的影响. 东北林业大学学报. 2023(09): 112-119 .
    8. 胡亚伟,施政乐,刘畅,徐勤涛,张建军. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响. 生态学杂志. 2023(09): 2072-2080 .

    Other cited types(8)

Catalog

    Article views (621) PDF downloads (127) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return