• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Sun Ziqi, Mu Changcheng, Wang Ting, Li Meilin, Wang Wenjing. Spatial differentiation law of carbon and nitrogen storage along the environmental gradient of Yuanchi lakeshore wetland ecosystems in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 34-46. DOI: 10.12171/j.1000-1522.20230185
Citation: Sun Ziqi, Mu Changcheng, Wang Ting, Li Meilin, Wang Wenjing. Spatial differentiation law of carbon and nitrogen storage along the environmental gradient of Yuanchi lakeshore wetland ecosystems in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 34-46. DOI: 10.12171/j.1000-1522.20230185

Spatial differentiation law of carbon and nitrogen storage along the environmental gradient of Yuanchi lakeshore wetland ecosystems in Changbai Mountain of northeastern China

More Information
  • Received Date: July 23, 2023
  • Revised Date: January 10, 2024
  • Accepted Date: June 02, 2024
  • Available Online: June 04, 2024
  • Objective 

    Exploring the spatial differentiation and formation mechanism of carbon and nitrogen storage in wetland ecosystem along the lakeshore to the highlands will help to reduce the uncertainty of wetland carbon storage estimation.

    Method 

    The ecosystem carbon and nitrogen storage (vegetation and soil), and related environmental factors (water level, water level fluctuation amplitude, soil organic matter, total nitrogen and total phosphorus, etc.) of six plant communities (L-Phragmites australis swamp, C-tussock swamp, D-Ledum palustre swamp, LN-Larix olgensis-Sphagnum magellanicum swamp, LX-Larix olgensis-moss swamp and LT-Larix olgensis-Carex schmidtii swamp) distributing along the lakeshore to the highland environmental gradient were simultaneously determined by relative growth equation and carbon/nitrogen analyzer method, to reveal its spatial differentiation law and its formation mechanism.

    Result 

    (1) The carbon and nitrogen storage (2.17−69.98 t/ha and 0.058−0.940 t/ha) of the vegetation increased progressively along the environmental gradient from lakeshore to upland (LT ≈ LX > LN > D > C > L), in which the dominant vegetation layer accounted for main position (73.72%−93.37% and 71.57%−85.24%). (2) The soil carbon and nitrogen storage (67.45−243.21 t/ha and 2.44−13.53 t/ha) decreased along the environmental gradient in a step-by-step manner (L > C > D ≈ LN > LX ≈ LT), there were three types of vertical spatial differentiation of carbon stock: first constant and then decreasing (L), first increasing and then decreasing (C, D and LN), and decreasing (LX and LT), and those of nitrogen storage were basically the same as that of carbon stock (only C and LX were slightly different). (3) The carbon and nitrogen storage (122.20−245.38 t/ha and 3.31−13.58 t/ha) of the ecosystem decreased first and then steadily or decreased in a step-by-step manner along the environmental gradient, respectively, the proportion of carbon and nitrogen in soil decreased (50.27%−99.11% and 73.48%−99.57%), but that of vegetation increased (0.89%−49.73% and 0.43%−26.52%). (4) The carbon storage of ecosystems at the lower, middle and upper habitats of the water environmental gradient from lakeshore to upland was promoted by water level, restrained by water level and restrained by water level fluctuation amplitude in turn, while the nitrogen storage was promoted by water level, restrained by water level fluctuation amplitude and promoted by soil total nitrogen in the corresponding habitat.

    Conclusion 

    The carbon and nitrogen storage of wetland ecosystem in lakeshore of Yuanchi Lake has obvious spatial differentiation law along the water environmental gradient from lakeshore to upland, and its formation mechanism is that the water level gradient and distribution of vegetation types caused by microtopography determine the carbon and nitrogen storage capacity of each marsh type. Therefore, accurate determination of carbon and nitrogen storage of each marsh type in the lakeshore zone will help to reduce the uncertainty of carbon and nitrogen storage estimation at catchment scale.

  • [1]
    Mitra S, Wassmann R, Vlek P L G. An appraisal of global wetland area and its organic carbon stock[J]. Current Science, 2005, 88(1): 25−35.
    [2]
    Mitsch W J, Bernal B, Nahlik A M, et al. Wetlands, carbon, and climate change[J]. Landscape Ecology, 2013, 28(4): 583−597. doi: 10.1007/s10980-012-9758-8
    [3]
    Koehler A N N K, Sottocornola M, Kiely G. How strong is the current carbon sequestration of an Atlantic blanket bog?[J]. Global Change Biology, 2011, 17(1): 309−319. doi: 10.1111/j.1365-2486.2010.02180.x
    [4]
    Dayathilake D, Lokupitiya E, Wijeratne V. Estimation of soil carbon stocks of urban freshwater wetlands in the Colombo Ramsar Wetland City and their potential role in climate change mitigation[J]. Wetlands, 2021, 41: 1−10. doi: 10.1007/s13157-021-01421-w
    [5]
    Abegaz A, Winowiecki L A, Vågen T G, et al. Spatial and temporal dynamics of soil organic carbon in landscapes of the upper Blue Nile Basin of the Ethiopian Highlands[J]. Agriculture, Ecosystems & Environment, 2016, 218: 190−208.
    [6]
    Xie E, Zhang Y, Huang B, et al. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981−2011[J/OL]. Soil and Tillage Research, 2021, 205: 104763. [2020−08−22]. https://doi.org/10.1016/j.still.2020.104763.
    [7]
    Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications, 1991, 1(2): 182−195. doi: 10.2307/1941811
    [8]
    Roulet N T. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada[J]. Wetlands, 2000, 20(4): 605−615. doi: 10.1672/0277-5212(2000)020[0605:PCSGGA]2.0.CO;2
    [9]
    Anderson N J, D’andrea W, Fritz S C. Holocene carbon burial by lakes in SW greenland[J]. Global Change Biology, 2009, 15(11): 2590−2598. doi: 10.1111/j.1365-2486.2009.01942.x
    [10]
    Bills J S, Jacinthe P A, Tedesco L P. Soil organic carbon pools and composition in a wetland complex invaded by reed canary grass[J]. Biology and Fertility of Soils, 2010, 46: 697−706. doi: 10.1007/s00374-010-0476-6
    [11]
    Cotrufo M F, Lavallee J M. Soil organic matter formation, persistence, and functioning: a synthesis of current understanding to inform its conservation and regeneration[J]. Advances in Agronomy, 2022, 172: 1−66.
    [12]
    Wang M L, Lai J P, Hu K T, et al. Compositions and sources of stable organic carbon and nitrogen isotopes in surface sediments of Poyang Lake[J]. China Environmental Science, 2014, 34(4): 1019−1025.
    [13]
    Gudasz C, Bastviken D, Steger K, et al. Temperature-controlled organic carbon mineralization in lake sediments[J]. Nature, 2010, 466: 478−481. doi: 10.1038/nature09186
    [14]
    Keiliweit M, Wanzek T, Kleber M, et al. Anaerobic microsites have an unaccounted role in soil carbon stabilization[J/OL]. Nature Communications, 2017, 8(1): 1771 [2023−01−19]. https://www.nature.com/articles/s41467-017-01406-6.
    [15]
    Li J, Wen Y, Zhou Q, et al. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands[J]. Bioresource Technology, 2008, 99(11): 4990−4996. doi: 10.1016/j.biortech.2007.09.012
    [16]
    Dai E F, Zhai R X, Ge Q S, et al. Detecting the storage and change on topsoil organic carbon in grasslands of Inner Mongolia from 1980s to 2010s[J]. Journal of Geographical Sciences, 2014, 24(6): 1035−1046. doi: 10.1007/s11442-014-1136-9
    [17]
    Chen X, Yang X, Dong X, et al. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China)[J]. Hydrobiologia, 2011, 661(1): 223−234. doi: 10.1007/s10750-010-0526-y
    [18]
    Iacob O, Rowan J S, Brown I, et al. Evaluating wider benefits of natural flood management strategies: an ecosystem-based adaptation perspective[J]. Hydrology Research, 2014, 45(6): 774−787. doi: 10.2166/nh.2014.184
    [19]
    Carlson M M L, Wilcox D A, Wiley M J. Hydrogeology and landform morphology affect plant communities in a Great Lakes ridge-and-swale wetland complex[J]. Wetlands, 2020, 40(6): 2209−2224. doi: 10.1007/s13157-020-01312-6
    [20]
    Shipley B, Keddy P A, Lefkovitch L P. Mechanisms producing plant zonation along a water depth gradient: a comparison with the exposure gradient[J]. Canadian Journal of Botany, 1991, 69(7): 1420−1424. doi: 10.1139/b91-184
    [21]
    Qi Q, Zhang D, Zhang M, et al. Hydrological and microtopographic effects on community ecological characteristics of Carex schmidtii tussock wetland[J]. Science of the Total Environment, 2021, 780: 146630. doi: 10.1016/j.scitotenv.2021.146630
    [22]
    Liu Y, Wang L, Liu H, et al. Comparison of carbon sequestration ability and effect of elevation in fenced wetland plant communities of the Xilin River floodplains: a model case study[J]. River Research Applications, 2015, 31(7): 858−866. doi: 10.1002/rra.2777
    [23]
    梅雪英, 张修峰. 崇明东滩湿地自然植被演替过程中储碳及固碳功能变化[J]. 应用生态学报, 2007, 18(4): 933−936. doi: 10.3321/j.issn:1001-9332.2007.04.037

    Mei X Y, Zhang X F. Carbon storage and carbon fixation during the succession of natural vegetation in wetland ecosystem on east beach of Chongming Island[J]. Chinese Journal of Applied Ecology, 2007, 18(4): 933−936. doi: 10.3321/j.issn:1001-9332.2007.04.037
    [24]
    Joabsson A, Christensen T R. Methane emissions from wetlands and their relationship with vascular plants: an arctic example[J]. Global Change Biology, 2001, 7(8): 919−932. doi: 10.1046/j.1354-1013.2001.00044.x
    [25]
    Gan X J, Cai Y T, Choi C Y, et al. Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance[J]. Estuarine, Coastal Shelf Science, 2009, 83(2): 211−218. doi: 10.1016/j.ecss.2009.03.026
    [26]
    Reddy K R, Delaune R D. Biogeochemistry of wetlands: science and applications[M]. New York: CRC Press, 2008.
    [27]
    Diamond J S, Epstein J M, Cohen M J, et al. A little relief: ecological functions and autogenesis of wetland microtopography[J/OL]. Wiley Interdisciplinary Reviews: Water, 2021, 8(1): e1493 [2023−02−25]. https://doi.org/10.1002/wat2.1493.
    [28]
    Yimer F, Ledin S, Abdeikadit A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia[J]. Geoderma, 2006, 135: 335−344. doi: 10.1016/j.geoderma.2006.01.005
    [29]
    Zhao Q, Bai J, Liu Q, et al. Spatial and seasonal variations of soil carbon and nitrogen content and stock in a tidal salt marsh with Tamarix chinensis, China[J]. Wetlands, 2016, 36(1): 145−152.
    [30]
    Reich P B, Hobbie S E, Lee T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature, 2006, 440: 922−925. doi: 10.1038/nature04486
    [31]
    Bai J H, Ouyang H, Xiao R, et al. Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China[J]. Australian Journal of Soil Research, 2010, 48(8): 730−736. doi: 10.1071/SR09171
    [32]
    Liu W, Chen S, Qin X, et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2012, 7(3): 1−12.
    [33]
    刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074−1083.

    Liu S, Luo D, Liu Q L, et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan[J]. Acta Ecologica Sinica, 2017, 37(4): 1074−1083.
    [34]
    Downing J A, Prairie Y, Cole J, et al. The global abundance and size distribution of lakes, ponds, and impoundments[J]. Limnology Oceanography, 2006, 51(5): 2388−2397. doi: 10.4319/lo.2006.51.5.2388
    [35]
    Buffam I, Turner M G, Desai A R, et al. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district[J]. Global Change Biology, 2011, 17(2): 1193−1211. doi: 10.1111/j.1365-2486.2010.02313.x
    [36]
    叶春, 李春华, 邓婷婷. 论湖滨带的结构与生态功能[J]. 环境科学研究, 2015, 28(2): 171−181.

    Ye C, Li C H, Deng T T. Structures and ecological functions of lake littoral zones[J]. Research of Environmental Sciences, 2015, 28(2): 171−181.
    [37]
    Zheng P R, Li C H, Ye C, et al. Characteristic and affecting factors of wetland herbs’ distribution in the radiant belt toward land of lake-terrestrial ecotone in Tibet, China[J]. Environmental Sciences Europe, 2022, 34(1): 1−16. doi: 10.1186/s12302-021-00581-0
    [38]
    Mitsch W J, Gosselink J G. Wetlands[M]. New York: John Wiley & Sons, 2015.
    [39]
    Coops H, Beklioglu M, Crisman T L. The role of water-level fluctuations in shallow lake ecosystems-workshop conclusions[J]. Hydrobiologia, 2003, 506(1): 23−27.
    [40]
    黄昕琦, 李琳, 吕烨, 等. 内蒙古乌梁素海湿地土壤有机碳组成与碳储量[J]. 湿地科学, 2015, 13(2): 252−257.

    Huang X Q, Li L, Lü Y, et al. Composition and storage of organic carbon in soils of in Ulansuhai Wetlands in Inner Mongolia Autonous Region[J]. Wetland Science, 2015, 13(2): 252−257.
    [41]
    刘旭, 李畅游, 贾克力, 等. 北方干旱区湖泊湿地沉积物有机碳分布及碳储量特征研究: 以乌梁素海为例[J]. 生态环境学报, 2013, 22(2): 319−324. doi: 10.3969/j.issn.1674-5906.2013.02.024

    Liu X, Li C Y, Jia K L, et al. Spatial distribution and storage characteristic of organic carbon in sediments of lake wetland in northern arid areas: a case study of Wuliangsuhai Lake[J]. Ecology and Environmental Sciences, 2013, 22(2): 319−324. doi: 10.3969/j.issn.1674-5906.2013.02.024
    [42]
    Dian L, Jiang L J, Wu X F, et al. Soil organic carbon and its controlling factors in the lakeside of west Mauri Lake along the wetland vegetation types[J/OL]. Processes, 2022, 10(4): 765 [2023−04−13]. https://doi.org/10.3390/pr10040765.
    [43]
    Bao K, Wang G, Jia L, et al. Anthropogenic impacts in the Changbai Mountain region of NE China over the last 150 years: geochemical records of peat and altitude effects[J]. Environmental Science and Pollution Research, 2019, 26: 7512−7524. doi: 10.1007/s11356-019-04138-w
    [44]
    Mu C C, Han S J, Luo J C, et al. Biomass distribution patterns of ecotones between forest and swamp in Changbai Mountain[J]. Journal of Forestry Research, 2000, 11: 198−202. doi: 10.1007/BF02855524
    [45]
    杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012

    Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012
    [46]
    牟长城, 王彪, 卢慧翠, 等. 大兴安岭天然沼泽湿地生态系统碳储量[J]. 生态学报, 2013, 33(16): 4956−4965. doi: 10.5846/stxb201212271884

    Mu C C, Wang B, Lu H C, et al. Carbon storage of natural wetland ecosystem in Daxing’anling of China[J]. Acta Ecologica Sinica, 2013, 33(16): 4956−4965. doi: 10.5846/stxb201212271884
    [47]
    王伯炜, 牟长城, 王彪. 长白山原始针叶林沼泽湿地生态系统碳储量[J]. 生态学报, 2019, 39(9): 3344−3354.

    Wang B W, Mu C C, Wang B. Carbon storage of a primary coniferous forested wetland ecosystem in the temperate Changbai Mountain of China[J]. Acta Ecologica Sinica, 2019, 39(9): 3344−3354.
    [48]
    梅莉, 张卓文, 谷加存, 等. 水曲柳和落叶松人工林乔木层碳、氮储量及分配[J]. 应用生态学报, 2009, 20(8): 1791−1796.

    Mei L, Zhang Z W, Gu J C, et al. Carbon and nitrogen storages and allocation in tree layers of Fraxinus mandshurica and Larix gmelinii plantations[J]. Chinese Journal of Applied Ecology, 2009, 20(8): 1791−1796.
    [49]
    施家月, 王希华, 闫恩荣, 等. 浙江天童常见植物幼树器官的氮磷养分特征[J]. 华东师范大学学报(自然科学版), 2006(2): 121−129.

    Shi J Y, Wang X H, Yan E R, et al. Saplings nutrient characteristics of common plants in Tiantong National Forest Park[J]. Journal of East China Normal University (Natural Science), 2006(2): 121−129.
    [50]
    彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(5): 1526−1538. doi: 10.11766/trxb201910210076

    Peng W H, Mu C C, Chang Y H, et al. Carbon storage of forested wetland ecosystems in the cold temperate permafrost region, Northeast China[J]. Acta Pedologica Sinica, 2020, 57(5): 1526−1538. doi: 10.11766/trxb201910210076
    [51]
    Blais A M, Lorrain S, Plourde Y, et al. Organic carbon densities of soils and vegetation of tropical, temperate and boreal forests [M]. Berlin: Springer, 2005: 155−185.
    [52]
    Xu L, He N P, Yu G R. Nitrogen storage in China’s terrestrial ecosystems[J]. Science of the Total Environment, 2020, 709: 136201. doi: 10.1016/j.scitotenv.2019.136201
    [53]
    高俊琴, 雷光春, 李丽, 等. 若尔盖高原三种湿地土壤有机碳分布特征[J]. 湿地科学, 2010, 8(4): 327−330.

    Gao J Q, Lei G C, Li L, et al. The distribution characteristics of soil organic carbon in three kinds of wetland soils in Zoige Plateau[J]. Wetland Science, 2010, 8(4): 327−330.
    [54]
    Fenner N, Freeman C. Drought-induced carbon loss in peatlands[J]. Nature Geoscience, 2011, 4(12): 895−900. doi: 10.1038/ngeo1323
    [55]
    Guo X L, Lu X G, Tong S Z, et al. Influence of environment and substrate quality on the decomposition of wetland plant root in the Sanjiang Plain, Northeast China[J]. Journal of Environmental Sciences, 2008, 20(12): 1445−1452. doi: 10.1016/S1001-0742(08)62547-4
    [56]
    任玉连, 陆梅, 曹乾斌, 等. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104−115.

    Ren Y L, Lu M, Cao Q B, et al. Spatial distribution characteristics of soil organic carbon and total nitrogen stocks across the different typical vegetation types in Nangunhe National Nature Reserve, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(11): 104−115.
    [57]
    Blodau C, Moore T R. Experimental response of peatland carbon dynamics to a water table fluctuation[J]. Aquatic Sciences, 2003, 65(1): 47−62. doi: 10.1007/s000270300004
    [58]
    李忠, 孙波, 林心雄. 我国东部土壤有机碳的密度及转化的控制因素[J]. 地理科学, 2001, 21(4): 301−307. doi: 10.3969/j.issn.1000-0690.2001.04.003

    Li Z, Sun B, Lin X X. Density of soil organic carbon and the factors controlling its turnover in east China[J]. Scientia Geographica Sinica, 2001, 21(4): 301−307. doi: 10.3969/j.issn.1000-0690.2001.04.003
    [59]
    Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3): 997−1005. doi: 10.1104/pp.111.175232
    [60]
    Malhotra H, Vandana, Sharma S, et al. Phosphorus nutrition: plant growth in response to deficiency and excess[J]. Plant Nutrients Abiotic Stress Tolerance, 2018: 171−190.
    [61]
    Bai J H, Ouyang H, Deng W, et al. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands[J]. Geoderma, 2005, 124(1/2): 181−192.
    [62]
    Zhong Y, Jiang M, Middleton B A H, et al. Effects of water level alteration on carbon cycling in peatlands[J/OL]. Ecosystem Health Sustainability, 2020, 6(1): 1806113 [2022−09−08]. https://doi.org/10.1080/20964129.2020.1806113.
  • Cited by

    Periodical cited type(34)

    1. 孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
    2. 裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
    3. 贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
    4. 张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
    5. 罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
    6. 张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
    7. 廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
    8. 贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
    9. 李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
    10. 王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
    11. 孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
    12. 岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
    13. 徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
    14. 杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
    15. 刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
    16. 王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
    17. 谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
    18. 吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
    19. 陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
    20. 王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
    21. 童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
    22. 苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
    23. 刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
    24. 孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
    25. 张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
    26. 林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
    27. 林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
    28. 姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
    29. 林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
    30. 阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
    31. 林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
    32. 赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
    33. 李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
    34. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(26)

Catalog

    Article views (285) PDF downloads (34) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return