• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Zihan, Ji Jiachen, Zhang Fan. Optimization and attribution analysis of annual runoff simulation models in the upper reaches of the Heihe River, northwestern China[J]. Journal of Beijing Forestry University, 2024, 46(3): 80-90. DOI: 10.12171/j.1000-1522.20230212
Citation: Wu Zihan, Ji Jiachen, Zhang Fan. Optimization and attribution analysis of annual runoff simulation models in the upper reaches of the Heihe River, northwestern China[J]. Journal of Beijing Forestry University, 2024, 46(3): 80-90. DOI: 10.12171/j.1000-1522.20230212

Optimization and attribution analysis of annual runoff simulation models in the upper reaches of the Heihe River, northwestern China

More Information
  • Received Date: August 27, 2023
  • Revised Date: October 24, 2023
  • Accepted Date: November 19, 2023
  • Available Online: November 23, 2023
  • Objective 

    The primary objective of this study is to conduct an in-depth investigation into the impact of human activities and climate change on the annual runoff in the upper reaches of the Heihe River of northwestern China, with the aim of providing scientific support for regional water resource conservation and planning.

    Method 

    This study employed a comprehensive approach involving the Mann-Kendall non-parametric statistical test, Pettitt test, and sliding t-test methods to assess the trends in the annual runoff series in the upper reaches of the Heihe River from 1954 to 2020. The objective was to identify abrupt change points in the annual runoff series and delineate the reference period and analysis period. Building upon this foundation, we employed the BP neural network model, the grey time series model, and the multivariate linear regression model to simulate the annual runoff variations during the reference period. We then selected the model with the best simulation performance. Subsequently, utilizing the selected model and runoff attribution methods, we quantitatively analyzed the driving mechanisms of human activities and climate change factors on the annual runoff variations.

    Result 

    Trend analysis revealed that the annual runoff series experienced abrupt changes around 1982 and 2006. Consequently, the annual runoff series in the upper reaches of the Heihe River can be divided into three phases: 1954–1982 (reference period), 1982–2006 (analysis period 1), and 2006–2020 (analysis period 2). In the simulation of the annual runoff series during the reference period, the BP neural network model exhibited a clear advantage over the other two models in three parameters during the validation period: relative error (0.79%), Nash-Sutcliffe efficiency coefficient (0.84), and goodness of fit (0.84). Utilizing the neural network model for annual runoff attribution analysis, it was determined that human activities led to an average decrease of 7.56 × 108 m3 in annual runoff between 1982 and 2020. However, during the period of 2006 to 2020, the adverse contribution of human activities in the upper reaches of the Heihe River to runoff decreased by approximately 18.00% compared with the period from 1982 to 2006. A detailed analysis of the impact of climate change on annual runoff revealed that between 2006 and 2020, precipitation and evapotranspiration contributed approximately 11.00% and 8.00% more, respectively, to annual runoff compared with the period from 1954 to 1982.

    Conclusion 

    The BP neural network model demonstrates a strong performance in simulating the annual runoff series of the upper reaches of the Heihe River, achieving a simulation accuracy of 94.23% with a maximum error of only 1.36%. The annual runoff series in the upper Heihe River Basin exhibited trend transitions in 1982 and 2006. Increased human activities after 1982 lead to a reduction in annual runoff, while the comprehensive river basin management measures implemented after 2006 result in a mitigation of the negative impacts of human activities on annual runoff. Regarding the influence of climate change during the period from 1982 to 2020, evapotranspiration and precipitation contribute 46.57% and 53.43%, respectively to runoff.

  • [1]
    李秋菊, 李占玲, 王杰. 黑河流域上游径流变化及其归因分析[J]. 南水北调与水利科技, 2019, 17(3): 31−39. doi: 10.13476/j.cnki.nsbdqk.2019.0057

    Li Q J, Li Z L, Wang J. Analysis of runoff changes and their attribution in the upper reaches of the Heihe River Basin[J]. South to North Water Diversion and Water Conservancy Technology, 2019, 17(3): 31−39. doi: 10.13476/j.cnki.nsbdqk.2019.0057
    [2]
    胡广录, 陶虎, 焦娇, 等. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414−1424.

    Hu G L, Tao H, Jiao J, et al. Analysis of the trend and attribution of runoff changes in the Zhengyi Gorge of the Middle Reaches of the Heihe River[J]. Arid Area Research, 2023, 40(9): 1414−1424.
    [3]
    李芳, 邹松兵, 陆志翔, 等. 气候变暖背景下黄河源区白河和黑河流域径流变化归因分析[J]. 兰州大学学报(自然科学版), 2020, 56(1): 56−64. doi: 10.13885/j.issn.0455-2059.2020.01.007

    Li F, Zou S B, Lu Z X, et al. Attributive analysis of runoff changes in the Baihe and Heihe River basins of the Yellow River source area under the background of climate warming[J]. Journal of Lanzhou University (Natural Science Edition), 2020, 56(1): 56−64. doi: 10.13885/j.issn.0455-2059.2020.01.007
    [4]
    赵利祥, 郭忠录, 聂小飞, 等. 极端降雨事件对南方红壤区径流和输沙的影响—基于赣江支流濂江上游流域的长序列分析(1984—2020年)[J/OL]. 湖泊科学: 1−12[2023−08−23]. http://kns.cnki.net/kcms/detail/32.

    Zhao L X, Guo Z L, Nie X F, et al. The impact of extreme rainfall events on runoff and sediment transport in the southern red soil region: a long-term series analysis based on the upper reaches of the Lianjiang River Basin, a tributary of the Ganjiang River (1984−2020) [J/OL]. Lake Science: 1−12 [2023−08−23]. http://kns.cnki.net/kcms/detail/32.
    [5]
    王玉洁, 秦大河. 气候变化及人类活动对西北干旱区水资源影响研究综述[J]. 气候变化研究进展, 2017, 13(5): 483−493.

    Wang Y J, Qin D H. A review of the impact of climate change and human activities on water resources in arid areas of northwest China[J]. Progress in Climate Change Research, 2017, 13(5): 483−493.
    [6]
    Wang Y F, Ye A Z, Zhang Y H, et al. The quantitative attribution of climate change to runoff increase over the Qinghai-Tibetan Plateau[J/OL]. Science of the Total Environment, 2023, 897[2023−08−19]. https://doi.org/10.1016/j.scitotenv.2023.165326.
    [7]
    Yan W, Wang Y F, Ma X F, et al. Snow cover and climate change and their coupling effects on runoff in the Keriya River Basin during 2001–2020[J]. Remote Sensing, 2023, 15(13): 2072−4292.
    [8]
    Zhai R, Tao F L. Contributions of climate change and human activities to runoff change in seven typical catchments across China[J]. Science of the Total Environment, 2017, 605: 219−229.
    [9]
    Cong Z T, Shahid M, Zhang D W. Attribution of runoff change in the alpine basin: a case study of the Heihe Upstream Basin, China[J]. Hydrological Sciences Journal, 2017, 62(6): 1013−1028. doi: 10.1080/02626667.2017.1283043
    [10]
    陈志高, 吴子豪, 班亚, 等. 基于调和分析及VMD-BP神经网络的感潮河段流量预报[J]. 武汉大学学报(信息科学版), 2023, 48(8): 1389−1397.

    Chen Z G, Wu Z H, Ban Y, et al. Flow prediction of tidal river sections based on harmonic analysis and VMD-BP neural network[J]. Journal of Wuhan University (Information Science Edition), 2023, 48(8): 1389−1397.
    [11]
    Qiu L H, Peng D Z, Xu Z X, et al. Identification of the impacts of climate changes and human activities on runoff in the upper and middle reaches of the Heihe River Basin, China[J]. Journal of Water and Climate Change, 2016, 7(1): 251−262. doi: 10.2166/wcc.2015.115
    [12]
    Gui Z Y, Li M, Guo P, Simulation-based inexact fuzzy semi-infinite programming method for agricultural cultivated area planning in the Shiyang River Basin[J/OL]. Journal of Irrigation and Drainage Engineering, 2017, 143(2)[2017−03−22]. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001118.
    [13]
    Yang H B, Yang D W, Lei Z D, et al. New analytical derivation of the mean annual water-energy balance equation[J/OL]. Water Resources Research, 2008, 44(3)[2008−03−12]. https://doi.org/10.1029/2007WR006135.
    [14]
    Roderick M L, Farquhar G D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties[J/OL]. Water Resources Research, 2011, 47(12)[2011−06−21]. https://doi.org/10.1029/2010WR009826.
    [15]
    Yang H B, Yang D W, Hu Q F. An error analysis of the Budyko hypothesis for assessing the contribution of climate change to runoff[J]. Water Resources Research, 2014, 50(12): 9620−9629. doi: 10.1002/2014WR015451
    [16]
    Zhen H, Yan-Fang S, Deliang C, et al. Clarification of dominating drivers for runoff changes in the upper reach of Mekong River Basin[J/OL]. Journal of Hydrology: Regional Studies, 2023, 48 [2023−09−04]. https://doi.org/10.1016/j.ejrh.2023.101456 .
    [17]
    Bai X L, Zhao W Z. Impacts of climate change and anthropogenic stressors on runoff variations in major river basins in China since 1950[J/OL]. Science of the Total Environment, 2023, 898[2023−08−23]. https://doi.org/10.1016/j.scitotenv.2023.165349.
    [18]
    Fischer M, Pavlfk P, Vizina A, et al. Attributing the drivers of runoff decline in the Thaya river basin[J/OL]. Journal of Hydrology, 2023, 48[2023−06−27]. https://doi.org/10.1016/j.ejrh.2023.101436.
    [19]
    Wei X K, Wang G J, Schmalz B, et al. Evaluation of transformer model and self-attention mechanism in the Yangtze River Basin runoff prediction[J/OL]. Journal of Hydrology, 2023, 47 [2023−08−20]. https://doi.org/10.1016/j.ejrh.2023.101438.
    [20]
    Yang T, Yang X, Jia C. Detecting the main driving force of runoff change in the Beiluo River Basin, China[J]. Environmental Science and Pollution Research, 2023, 30(38): 89823−89837. doi: 10.1007/s11356-023-28537-2
    [21]
    Yu Y P, Yu P T, Wang Y H, et al. Natural revegetation has dominated annual runoff reduction since the Grain for Green Program began in the Jing River Basin Northwest China[J/OL]. Journal of Hydrology, 2023, 625(36)[2023−08−31]. https://doi.org/10.1016/j.jhydrol.2023.129978.
    [22]
    He S, Chen K, Liu Z, et al. Exploring the impacts of climate change and human activities on future runoff variations at the seasonal scale[J]. Journal of Hydrology, 2023, 619: 129382. doi: 10.1016/j.jhydrol.2023.129382
    [23]
    Yan Z H, Lei H M, Gao H D, et al. Simulating the hydrological impacts of intensive soil and water conservation measures in the Yellow River Basin using a distributed physically-based model[J/OL]. Journal of Hydrology, 2023, 625[2023−08−07]. https://doi.org/10.1016/j.jhydrol.2023.129936.
    [24]
    Jin H Y, Patrick W, Chen X D, et al. Nonstationary flood and its influencing factors analysis in the Hanjiang River Basin, China[J/OL]. Journal of Hydrology, 2023, 625 [2023−09−02]. https://doi.org/10.1016/j.jhydrol.2023.129994.
    [25]
    Ma H, Zhong L, Fu Y F, et al. A study on hydrological responses of the Fuhe River Basin to combined effects of land use and climate change[J/OL]. Journal of Hydrology: Regional Studies, 2023, 48[2023−09−06]. https://doi.org/10.1016/j.ejrh.2023.101476.
    [26]
    Whitney M K, Vivoni E R, Bohn T J, et al. Spatial attribution of declining Colorado River runoff under future warming[J/OL]. Journal of Hydrology, 2023, 617 [2023−02−27]. https://doi.org/10.1016/j.jhydrol.2023.129125.
    [27]
    Zhang Z P, Wang Q Z, Guan Q Y, et al. Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization[J/OL]. Agricultural Water Management, 2023, 279 [2023−02−19]. https://doi.org/10.1016/j.agwat.2023.108177.
    [28]
    Wei D M, Liu S G, Wu Y P, et al. Impacts of human activities and climate change on water and sediment evolution in four large subtropical river basins in China[J/OL]. Ecological Indicators, 2023, 155[2023−09−22]. https://doi.org/10.1016/j.ecolind.2023.110958.
  • Related Articles

    [1]Wang Yuning, Feng Tianjiao, Sun Long, Liu Xiru, Liu Yabo, Wang Ping. Differences and influencing factors of understory vegetation species diversity between typical plantations and natural forests in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240228
    [2]Zhang Zixuan, Meng Xiaoqian, Zhang Xinna, Xu Chengyang, Chen Tao, Wang Wenxue, Ning Qiuling. Responses of phyllosphere microbial communities in understory vegetation under plant life form and light intensity[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20250088
    [3]Gao Minglei, Man Xiuling, Duan Beixing. Short-term effects of understory vegetation and litter on soil CO2 flux of natural forests in cold temperate zone of China[J]. Journal of Beijing Forestry University, 2021, 43(3): 55-65. DOI: 10.12171/j.1000-1522.20200249
    [4]Jiang Jun, Liu Xianzhao, Jia Hongyan, Ming Angang, Chen Beibei, Lu Yuanchang. Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 170-177. DOI: 10.13332/j.1000-1522.20190022
    [5]Wei Anqi, Wei Tianxing, Liu Haiyan, Wang Sha. PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area[J]. Journal of Beijing Forestry University, 2019, 41(4): 88-98. DOI: 10.13332/j.1000-1522.20180287
    [6]SUN Cao-wen, JIA Li-ming, YE Hong-lian, GAO Yuan, XIONG Chen-yan, WENG Xue-huang. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits.[J]. Journal of Beijing Forestry University, 2016, 38(12): 73-83. DOI: 10.13332/j.1000-1522.20160143
    [7]LIU Hai-yan, WEI Tian-xing, WANG Xian. Soil microbial community structure and functional diversity in typical plantations marked by PLFA in hilly loess region[J]. Journal of Beijing Forestry University, 2016, 38(1): 28-35. DOI: 10.13332/j.1000--1522.20150262
    [8]ZHOU Xiao-jing, LI Ke, FAN Hang, LIU Tong, LI Chun-fang, MA Chao, LIU Yu-jun. Composition and amounts of fatty acids in Perilla frutescens seed oils of different varieties and areas.[J]. Journal of Beijing Forestry University, 2015, 37(1): 98-114. DOI: 10.13332/j.cnki.jbfu.2015.01.005
    [9]LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24.
    [10]LU Shao-wei, WANG Xiong-bin1, YU Xin-xiao1, LU Shao-bo1, 3, LI Jin-hai4, WU Jun4. Influence of closing hillsides on vegetation diversity restoration in artificial coniferous forests.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 121-126.
  • Cited by

    Periodical cited type(22)

    1. 陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
    2. 陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
    3. 吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
    4. 吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
    5. 张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
    6. 韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
    7. 张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
    8. 刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
    9. 周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 . 本站查看
    10. 郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 . 本站查看
    11. 焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
    12. 洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
    13. 吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 . 本站查看
    14. 李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
    15. 张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 . 本站查看
    16. 陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
    17. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
    18. 王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
    19. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
    20. 钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 . 本站查看
    21. 毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
    22. 张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .

    Other cited types(33)

Catalog

    Article views (414) PDF downloads (98) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return