• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Qin Shaowei, Zhang Jing, Wang Yile, Xu Yuhang, Zhou Chunhan, Chen Keyu, Ji Baoming. Influence of arbuscular mycorrhizal fungi from two temperate grassland types on Medicago sativa seedling growth in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 53-61. DOI: 10.12171/j.1000-1522.20240213
Citation: Qin Shaowei, Zhang Jing, Wang Yile, Xu Yuhang, Zhou Chunhan, Chen Keyu, Ji Baoming. Influence of arbuscular mycorrhizal fungi from two temperate grassland types on Medicago sativa seedling growth in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 53-61. DOI: 10.12171/j.1000-1522.20240213

Influence of arbuscular mycorrhizal fungi from two temperate grassland types on Medicago sativa seedling growth in Inner Mongolia of northern China

More Information
  • Received Date: July 01, 2024
  • Revised Date: July 10, 2024
  • Available Online: November 14, 2024
  • Objective 

    This study aimed to investigate the mutualistic symbiotic mechanism between arbuscular mycorrhizal fungi (AMF) communities from natural grasslands and Medicago sativa seedlings, providing a theoretical foundation for identifying suitable native high-quality microbial resources.

    Method 

    We collected two AMF community inoculants from temperate meadow steppe and typical steppe in Inner Mongolia of northern China and used microbial filtrates without AMF propagules as controls. Two M. sativa varieties, Beilin 201 and Zhongmu No.1, were inoculated with these AMF communities. By analyzing the symbiotic relationship between AMF community and M. sativa and their effects on seedling growth and nutrient absorption, we evaluated the symbiotic effect of AMF communities from natural grasslands on M. sativa seedlings.

    Result 

    (1) There were significant differences in composition and structure of AMF communities from different grassland types, and all communities successfully established symbiotic relationships with two varieties of M. sativa. Glomus and Claroideoglomus were dominant genera in inoculated root systems. (2) Compared with no inoculation, AMF inoculation significantly increased the aboveground biomass and phosphorus content in plant tissues of M. sativa, but significantly reduced the nitrogen content in plant tissues but reduced nitrogen content. Notably, plants inoculated with AMF from the typical steppe exhibited a significant negative effect on nitrogen uptake, resulting in a significant decrease in plant nitrogen-to-phosphorus ratio (P < 0.05). The mycorrhizal growth response, phosphorus uptake effect, and nitrogen uptake of Beilin 201 were significantly greater than those of Zhongmu No. 1. (3) The mycorrhizal phosphorus uptake response of Beilin 201 after inoculation showed a significant positive correlation with the diversity of AMF within the roots, whereas the mycorrhizal phosphorus uptake response of Zhongmu No.1 exhibited a significant negative correlation with AMF diversity (P < 0.05), which means that a diverse diversity of AMF community may be more conducive to phosphorus uptake by Beilin 201.

    Conclusion 

    The AMF community from natural grasslands can significantly promote the growth and phosphorus absorption of M. sativa seedlings, but this ecological function is influenced by characteristics of M. sativa varieties. The composition of AMF community plays a crucial role in determining these ecological functions. Therefore, when selecting native AMF community for inoculation, it is essential to consider the compatibility between plant varieties and AMF communities to maximize optimal production and ecological benefits.

  • [1]
    Smith S E, Read D J. Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008, 3(3): 273−281.
    [2]
    Shi J, Wang X, Wang E. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems[J]. Annual Review of Plant Biology, 2023, 74: 569−607.
    [3]
    Wang B, Qiu Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza, 2006, 16(5): 299−363. doi: 10.1007/s00572-005-0033-6
    [4]
    张静, 王平, 杨明新, 等. 植物–土壤反馈与草地群落演替: 菌根真菌和土壤病原菌的调控作用[J]. 生态学报, 2021, 41(24): 9878−9885.

    Zhang J, Wang P, Yang M X, et al. Plant-soil feedbacks and succession dynamics of plant community in grassland: the roles of mycorrhizal fungi and soil pathogens[J] Acta Ecologica Sinica, 2021, 41 (24): 9878−9885.
    [5]
    Jiang S, Liu Y, Luo J, et al. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem[J]. New Phytologist, 2018, 220(4): 1222−1235. doi: 10.1111/nph.15112
    [6]
    苗阳, 郑钢, 卢欣石. 论中国古代苜蓿的栽培与利用[J]. 中国农学通报, 2010, 26(17): 403−407.

    Miao Y, Zheng G, Lu X S. Discussion on the cultivation and utilization of alfalfa in ancient China[J]. Chinese Agricultural Science Bulletin, 2010, 26(17): 403−407.
    [7]
    Kulkarni K P, Tayade R, Asekova S, et al. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security[J/OL]. Frontiers in Plant Science, 2018, 9: 1314 [2024−09−28]. https://doi.org/10.3389/fpls.2018.01314.
    [8]
    卢欣石. 中国苜蓿属植物遗传资源分类整理探究[J]. 中国草地学报, 2009, 31(5): 17−22.

    Lu X S. The exploration and classification of genetic resources of genus Medicago in China[J]. Chinese Journal of Grassland, 2009, 31(5): 17−22.
    [9]
    卢欣石. 苜蓿产业十年发展助推奶业提质升级[J]. 中国乳业, 2019, 4(28): 10−12.

    Lu X S. Alfalfa industry boosts the quality upgrade of the dairy industry over the past decade[J]. China Dairy, 2019, 4(28): 10−12.
    [10]
    Nazeri N K, Lambers H, Tibbett M, et al. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries[J/OL]. Plant Cell and Environment, 2014, 37(4): 911−921.
    [11]
    Xia D J, An X X, López I F, et al. Enhancing alfalfa photosynthetic performance through arbuscular mycorrhizal fungi inoculation across varied phosphorus application levels[J/OL]. Frontiers in Plant Science, 2023, 14: 1256084[2023−11−20]. https://doi.org/10.3389/fpls.2023.1256084.
    [12]
    林子然, 张英俊. 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响[J]. 草业科学, 2018, 35(1): 115−122. doi: 10.11829/j.issn.1001-0629.2017-0158

    Lin Z R, Zhang Y J. Effect of arbuscular mycorrhizal fungi and phosphorus on growth and physiological properties of alfalfa seedlings under drought stress[J]. Pratacultural Science, 2018, 35(1): 115−122. doi: 10.11829/j.issn.1001-0629.2017-0158
    [13]
    叶佳舒, 李涛, 胡亚军, 等. 干旱条件下AM真菌对植物生长和土壤水稳定性团聚体的影响[J]. 生态学报, 2013, 33(4): 1080−1090.

    Ye J S, Li T, Hu Y J, et, al. Influences of AM fungi on plant growth and water-stable soil aggregates under drought stresses[J]. Acta Ecologica Sinica, 2013, 33(4): 1080−1090.
    [14]
    Rillig M C. Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 2004, 84(4): 355−363. doi: 10.4141/S04-003
    [15]
    Zhao Y, Naeth M A. Soil amendment with a humic substance and arbuscular mycorrhizal fungi enhance coal mine reclamation[J/OL]. Science of the Total Environment, 2022, 823: 153696[2023−09−23]. DOI: 10.1016/j.scitotenv.2022.153696.
    [16]
    Alguacil M D M, Schlaeppi K, López-García Á, et al. Contrasting responses of arbuscular mycorrhizal fungal families to simulated climate warming and drying in a semiarid shrubland[J]. Microbial Ecology, 2022, 84(3): 941−944. doi: 10.1007/s00248-021-01886-6
    [17]
    Powell J R, Rillig M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function[J]. New Phytologist, 2018, 220(4): 1059−1075.
    [18]
    Chagnon P L, Bradley R L, Maherali H, et al. A trait-based framework to understand life history of mycorrhizal fungi[J]. Trends in Plant Science, 2013, 18(9): 484−491. doi: 10.1016/j.tplants.2013.05.001
    [19]
    Johnson N C, Wilson G W, Bowker M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2093−2098.
    [20]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and agricultural chemistry analysis[M]. 3rd Ed. Beijing: Soil and Agricultural Chemistry Analysis, 2000.
    [21]
    王思雨, 魏涵, 陈科宇, 等. 丛枝菌根真菌(AMF)孢子、菌丝密度及侵染率定量测定方法[Z/OL]. Bio-101, 2021. e2104253[2023−02−12]. Doi: 10.21769/BioProtoc. 2104253.

    Wang S Y, Wei H, Chen K Y, et al. Practical methods for arbuscular mycorrhizal fungal spore density, hyphal density and colonization rate of AMF[Z/OL]. Bio-101, 2021. Bio-101 e2104253[2023−02−12]. Doi: 10.21769/BioProtoc.2104253.
    [22]
    Lee J, Lee S, Young J P. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi[J]. FEMS Microbiology Ecology, 2008, 65(2): 339−349. doi: 10.1111/j.1574-6941.2008.00531.x
    [23]
    Sato K, Suyama Y, Saito M, et al. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis[J]. Grassland Science, 2005, 51(2): 179−181.
    [24]
    Bonfante P, Genre A. Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective[J]. Trends in Plant Science, 2008, 13(9): 492−498.
    [25]
    Krüger M, Krüger C, Walker C, et al. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level[J]. New Phytologist, 2012, 193(4): 970−984. doi: 10.1111/j.1469-8137.2011.03962.x
    [26]
    Burrows R L, Pfleger F L. Arbuscular mycorrhizal fungi respond to increasing plant diversity[J]. Canadian Journal of Botany, 2002, 80(2): 120-130.
    [27]
    王浩, 方燕, 刘润进, 等. 丛枝菌根中养分转运、代谢、利用与调控研究的最新进展[J]. 植物生理学报, 2018, 54(11): 1645−1658.

    Wang H, Fang Y, Liu R J, et al. Recent advances in the studies of nutrient transportation, metabolism, utilization and regulation in arbuscular mycorrhizas[J]. Plant Physiology Journal, 2018, 54(11): 1645−1658.
    [28]
    Lee E H, Eo J K, Ka K H, et al. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems[J]. Mycobiology, 2013, 41(3): 121−125. doi: 10.5941/MYCO.2013.41.3.121
    [29]
    Liu J, Liu X, Zhang Q, et al. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels [J/OL]. AMB Express, 2020, 10(1): 200 [2020−11−17]. https://doi.org/10.1186/s13568-020-01137-w.
    [30]
    谭英, 尹豪. 盐胁迫下根施AMF和褪黑素对紫花苜蓿生长、光合特征以及抗氧化系统的影响[J]. 草业学报, 2024, 33(6): 64−75. doi: 10.11686/cyxb2023366

    Tan Y, Yin H. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss[J]. Acta Prataculturae Sinica, 2024, 33(6): 64−75. doi: 10.11686/cyxb2023366
    [31]
    Jiang F, Zhang L, Zhou J, et al. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae[J]. New Phytologist, 2021, 230(1): 304−315.
    [32]
    Tian H, Drijber R A, Li X, et al. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.)[J]. Mycorrhiza, 2013, 23(6): 507−514. doi: 10.1007/s00572-013-0491-1
    [33]
    Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754−13759.
    [34]
    Govindarajulu M, Pfeffer P E, Jin H, et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis[J]. Nature, 2005, 435: 819−823. doi: 10.1038/nature03610
    [35]
    Bowles T M, Jackson L E, Cavagnaro T R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes[J]. Global Change Biology, 2018, 24(1): e171−e182.
    [36]
    Ghasemi M, Zahedi M, Gheysari M, et al. Effects of inoculation with four mycorrhizal species on seed phenolic and fatty acids of sesame plants grown under different irrigation regimes[J/OL]. Scientific Reports, 2023, 13(1): 16482 [2023−11−10]. https://doi.org/10.1038/s41598-023-42375-9.
    [37]
    van der Heijden M G, Streitwolf-Engel R, Riedl R, et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland[J]. New Phytologist, 2006, 172(4): 739−752. doi: 10.1111/j.1469-8137.2006.01862.x
    [38]
    王浩, 吴爱姣, 刘保兴, 等. 菌根真菌多样性与植物多样性的相互作用研究进展[J]. 微生物学通报, 2020, 47(11): 3918−3932.

    Wang H, Wu A J, Liu B X, et al. Interactions between mycorrhizal fungal diversity and plant diversity: a review[J]. Microbiology China, 2020, 47(11): 3918−3932.
    [39]
    张俊英, 许永利, 刘小艳. 丛枝菌根真菌对大棚番茄连作土壤的改良效果[J]. 北方园艺, 2018, 42(3): 119−124. doi: 10.11937/bfyy.20172163

    Zhang J Y, Xu Y L, Liu X Y. Improvement effect of arbuscular mycorrhizal fungi on continuous cropping tomato soil in greenhouse[J]. Northern Horticulture, 2018, 42(3): 119−124. doi: 10.11937/bfyy.20172163
  • Related Articles

    [1]Ma Jiaxin, Sun Yujun, Zhu Zhaoting. Impact of two types of competition indices on the growth and biomass assessment of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230230
    [2]Li Hui, Liu Dongchao, Xu Ruirui, Hou Lina, Wang Tianqi, Liu Zhonghua, Fu Xiao, Li Shengbo. Development and identification of SSR markers based on RAD-seq of Lonicera japonica[J]. Journal of Beijing Forestry University, 2021, 43(6): 108-117. DOI: 10.12171/j.1000-1522.20200337
    [3]Liu Feng, Xi Benye, Dai Tengfei, Yu Jinglin, Li Guangde, Chen Yushan, Wang Jie, Jia Liming. Effects of water and fertilizer coupling on soil nitrogen, fine root distribution and biomass of Populus tomentosa[J]. Journal of Beijing Forestry University, 2020, 42(1): 75-83. DOI: 10.12171/j.1000-1522.20190222
    [4]LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374
    [5]WANG Ling, ZHAO Guang-liang, HUANG Jin. Microbial biomass and enzyme activity of the rhizosphere soil under different grafted Xanthoceras sorbifolia cultivars[J]. Journal of Beijing Forestry University, 2015, 37(8): 69-75. DOI: 10.13332/j.1000-1522.20150013
    [6]DONG Dian, LIN Tian-xi, TANG Jing-yi, LIU Jing-chen, SUN Guo-wen, YAO Jie, CHENG Yan-xia. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54-63. DOI: 10.13332/j.cnki.jbfu.2014.04.013
    [7]DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22.
    [8]CHU Xu, DI Xue-ying, YANG Guang. Impacts of forest fire on root biomass, carbon and nitrogen concentration of Larix gmelinii.[J]. Journal of Beijing Forestry University, 2013, 35(2): 10-16.
    [9]XU Fei, GUO Wei-hua, XU Wei-hong, WANG Ren-qing. Effects of water stress on morphology, biomass allocation and photosynthesis in Robinia pseudoacacia seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 24-30.
    [10]ZHANG Guo-jun, ZHANG Guo-jun, LI Yun, LI Yun, LI Fang-ping, LI Fang-ping, XU Zhao-he, XU Zhao-he, SUN Yu-han, SUN Yu-han. Effects of root age on biomass and leaf nutrition in tetraploid Robinia pseudoacacia. [J]. Journal of Beijing Forestry University, 2009, 31(3): 37-41.
  • Cited by

    Periodical cited type(18)

    1. 黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 . 本站查看
    2. 张景朋,邵闯,蒋明亮. 高效液相色谱法测定防腐材中嘧菌酯含量的方法研究. 木材科学与技术. 2025(01): 64-70 .
    3. 吴喆虹,王文志,罗玲卓,袁超峰,苏勇,朱万泽. 贡嘎山健康与腐朽峨眉冷杉径向生长分异及其气候响应. 生态学报. 2024(23): 10897-10905 .
    4. 储炜,徐明,许琪,李婷,崔兆彦. 加速腐朽环境下重组竹力学及耐腐性能研究. 建筑科学与工程学报. 2023(03): 30-39 .
    5. 宋丽琴,宋太泽,祝席文,程芳超,孙建平. 木材花斑真菌对木材的影响及应用研究进展. 应用与环境生物学报. 2022(03): 805-812 .
    6. 谢启芳,张保壮,张利朋,苗壮. 自然干裂木柱受力性能试验与退化模型研究. 建筑结构学报. 2022(12): 210-222 .
    7. 常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响. 林业科学. 2022(11): 71-82 .
    8. 张景朋,蒋明亮,马星霞,张斌. 甲氧基丙烯酸酯类制剂的木材防腐性能研究. 北京林业大学学报. 2021(03): 131-137 . 本站查看
    9. 王玉娇,彭尧,曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析. 北京林业大学学报. 2021(03): 138-144 . 本站查看
    10. 王湘茹,曾飞扬,吕嘉宇,乔宇欣,闫丽. 硅烷偶联剂对水杨酸/二氧化硅微胶囊改性杨木耐腐性的影响. 林产工业. 2021(05): 54-59 .
    11. 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学. 2021(05): 165-175 .
    12. 赵艳,张泽宇,金宇乔,庞久寅,孙耀星. 木材表面仿制类玫瑰花超疏水结构研究. 林产工业. 2020(12): 32-34+39 .
    13. 赵博识,于志明,漆楚生,唐睿琳,张扬. 木材微生物变色与调控研究现状和展望. 林产工业. 2019(08): 1-4 .
    14. 郭宇,李超,李英洁,王哲,姚利宏. 木材细胞壁与木材力学性能及水分特性之间关系研究进展. 林产工业. 2019(08): 14-18 .
    15. 徐华东,狄亚楠,邢涛,徐群. 褐腐对白杨木材固碳量的影响规律及机理. 中南林业科技大学学报. 2019(11): 104-109 .
    16. 孙恒,冀晓东,赵红华,杨茂林,丛旭. 人工林刺槐木材物理力学性质研究. 北京林业大学学报. 2018(07): 104-112 . 本站查看
    17. 孙海燕,苏明垒,王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究. 林产工业. 2018(10): 22-27 .
    18. 陈继超,姜维娜,曹文静,周徐亮,周晓燕,徐莉. 杨木纤维/Si-B复合材料制备及其防腐性能研究. 南京林业大学学报(自然科学版). 2018(05): 206-210 .

    Other cited types(18)

Catalog

    Article views PDF downloads Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return