Citation: | Qin Shaowei, Zhang Jing, Wang Yile, Xu Yuhang, Zhou Chunhan, Chen Keyu, Ji Baoming. Influence of arbuscular mycorrhizal fungi from two temperate grassland types on Medicago sativa seedling growth in Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2024, 46(11): 53-61. DOI: 10.12171/j.1000-1522.20240213 |
This study aimed to investigate the mutualistic symbiotic mechanism between arbuscular mycorrhizal fungi (AMF) communities from natural grasslands and Medicago sativa seedlings, providing a theoretical foundation for identifying suitable native high-quality microbial resources.
We collected two AMF community inoculants from temperate meadow steppe and typical steppe in Inner Mongolia of northern China and used microbial filtrates without AMF propagules as controls. Two M. sativa varieties, Beilin 201 and Zhongmu No.1, were inoculated with these AMF communities. By analyzing the symbiotic relationship between AMF community and M. sativa and their effects on seedling growth and nutrient absorption, we evaluated the symbiotic effect of AMF communities from natural grasslands on M. sativa seedlings.
(1) There were significant differences in composition and structure of AMF communities from different grassland types, and all communities successfully established symbiotic relationships with two varieties of M. sativa. Glomus and Claroideoglomus were dominant genera in inoculated root systems. (2) Compared with no inoculation, AMF inoculation significantly increased the aboveground biomass and phosphorus content in plant tissues of M. sativa, but significantly reduced the nitrogen content in plant tissues but reduced nitrogen content. Notably, plants inoculated with AMF from the typical steppe exhibited a significant negative effect on nitrogen uptake, resulting in a significant decrease in plant nitrogen-to-phosphorus ratio (P < 0.05). The mycorrhizal growth response, phosphorus uptake effect, and nitrogen uptake of Beilin 201 were significantly greater than those of Zhongmu No. 1. (3) The mycorrhizal phosphorus uptake response of Beilin 201 after inoculation showed a significant positive correlation with the diversity of AMF within the roots, whereas the mycorrhizal phosphorus uptake response of Zhongmu No.1 exhibited a significant negative correlation with AMF diversity (P < 0.05), which means that a diverse diversity of AMF community may be more conducive to phosphorus uptake by Beilin 201.
The AMF community from natural grasslands can significantly promote the growth and phosphorus absorption of M. sativa seedlings, but this ecological function is influenced by characteristics of M. sativa varieties. The composition of AMF community plays a crucial role in determining these ecological functions. Therefore, when selecting native AMF community for inoculation, it is essential to consider the compatibility between plant varieties and AMF communities to maximize optimal production and ecological benefits.
[1] |
Smith S E, Read D J. Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008, 3(3): 273−281.
|
[2] |
Shi J, Wang X, Wang E. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems[J]. Annual Review of Plant Biology, 2023, 74: 569−607.
|
[3] |
Wang B, Qiu Y L. Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza, 2006, 16(5): 299−363. doi: 10.1007/s00572-005-0033-6
|
[4] |
张静, 王平, 杨明新, 等. 植物–土壤反馈与草地群落演替: 菌根真菌和土壤病原菌的调控作用[J]. 生态学报, 2021, 41(24): 9878−9885.
Zhang J, Wang P, Yang M X, et al. Plant-soil feedbacks and succession dynamics of plant community in grassland: the roles of mycorrhizal fungi and soil pathogens[J] Acta Ecologica Sinica, 2021, 41 (24): 9878−9885.
|
[5] |
Jiang S, Liu Y, Luo J, et al. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem[J]. New Phytologist, 2018, 220(4): 1222−1235. doi: 10.1111/nph.15112
|
[6] |
苗阳, 郑钢, 卢欣石. 论中国古代苜蓿的栽培与利用[J]. 中国农学通报, 2010, 26(17): 403−407.
Miao Y, Zheng G, Lu X S. Discussion on the cultivation and utilization of alfalfa in ancient China[J]. Chinese Agricultural Science Bulletin, 2010, 26(17): 403−407.
|
[7] |
Kulkarni K P, Tayade R, Asekova S, et al. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security[J/OL]. Frontiers in Plant Science, 2018, 9: 1314 [2024−09−28]. https://doi.org/10.3389/fpls.2018.01314.
|
[8] |
卢欣石. 中国苜蓿属植物遗传资源分类整理探究[J]. 中国草地学报, 2009, 31(5): 17−22.
Lu X S. The exploration and classification of genetic resources of genus Medicago in China[J]. Chinese Journal of Grassland, 2009, 31(5): 17−22.
|
[9] |
卢欣石. 苜蓿产业十年发展助推奶业提质升级[J]. 中国乳业, 2019, 4(28): 10−12.
Lu X S. Alfalfa industry boosts the quality upgrade of the dairy industry over the past decade[J]. China Dairy, 2019, 4(28): 10−12.
|
[10] |
Nazeri N K, Lambers H, Tibbett M, et al. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries[J/OL]. Plant Cell and Environment, 2014, 37(4): 911−921.
|
[11] |
Xia D J, An X X, López I F, et al. Enhancing alfalfa photosynthetic performance through arbuscular mycorrhizal fungi inoculation across varied phosphorus application levels[J/OL]. Frontiers in Plant Science, 2023, 14: 1256084[2023−11−20]. https://doi.org/10.3389/fpls.2023.1256084.
|
[12] |
林子然, 张英俊. 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响[J]. 草业科学, 2018, 35(1): 115−122. doi: 10.11829/j.issn.1001-0629.2017-0158
Lin Z R, Zhang Y J. Effect of arbuscular mycorrhizal fungi and phosphorus on growth and physiological properties of alfalfa seedlings under drought stress[J]. Pratacultural Science, 2018, 35(1): 115−122. doi: 10.11829/j.issn.1001-0629.2017-0158
|
[13] |
叶佳舒, 李涛, 胡亚军, 等. 干旱条件下AM真菌对植物生长和土壤水稳定性团聚体的影响[J]. 生态学报, 2013, 33(4): 1080−1090.
Ye J S, Li T, Hu Y J, et, al. Influences of AM fungi on plant growth and water-stable soil aggregates under drought stresses[J]. Acta Ecologica Sinica, 2013, 33(4): 1080−1090.
|
[14] |
Rillig M C. Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 2004, 84(4): 355−363. doi: 10.4141/S04-003
|
[15] |
Zhao Y, Naeth M A. Soil amendment with a humic substance and arbuscular mycorrhizal fungi enhance coal mine reclamation[J/OL]. Science of the Total Environment, 2022, 823: 153696[2023−09−23]. DOI: 10.1016/j.scitotenv.2022.153696.
|
[16] |
Alguacil M D M, Schlaeppi K, López-García Á, et al. Contrasting responses of arbuscular mycorrhizal fungal families to simulated climate warming and drying in a semiarid shrubland[J]. Microbial Ecology, 2022, 84(3): 941−944. doi: 10.1007/s00248-021-01886-6
|
[17] |
Powell J R, Rillig M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function[J]. New Phytologist, 2018, 220(4): 1059−1075.
|
[18] |
Chagnon P L, Bradley R L, Maherali H, et al. A trait-based framework to understand life history of mycorrhizal fungi[J]. Trends in Plant Science, 2013, 18(9): 484−491. doi: 10.1016/j.tplants.2013.05.001
|
[19] |
Johnson N C, Wilson G W, Bowker M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2093−2098.
|
[20] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
Bao S D. Soil and agricultural chemistry analysis[M]. 3rd Ed. Beijing: Soil and Agricultural Chemistry Analysis, 2000.
|
[21] |
王思雨, 魏涵, 陈科宇, 等. 丛枝菌根真菌(AMF)孢子、菌丝密度及侵染率定量测定方法[Z/OL]. Bio-101, 2021. e2104253[2023−02−12]. Doi: 10.21769/BioProtoc. 2104253.
Wang S Y, Wei H, Chen K Y, et al. Practical methods for arbuscular mycorrhizal fungal spore density, hyphal density and colonization rate of AMF[Z/OL]. Bio-101, 2021. Bio-101 e2104253[2023−02−12]. Doi: 10.21769/BioProtoc.2104253.
|
[22] |
Lee J, Lee S, Young J P. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi[J]. FEMS Microbiology Ecology, 2008, 65(2): 339−349. doi: 10.1111/j.1574-6941.2008.00531.x
|
[23] |
Sato K, Suyama Y, Saito M, et al. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis[J]. Grassland Science, 2005, 51(2): 179−181.
|
[24] |
Bonfante P, Genre A. Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective[J]. Trends in Plant Science, 2008, 13(9): 492−498.
|
[25] |
Krüger M, Krüger C, Walker C, et al. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level[J]. New Phytologist, 2012, 193(4): 970−984. doi: 10.1111/j.1469-8137.2011.03962.x
|
[26] |
Burrows R L, Pfleger F L. Arbuscular mycorrhizal fungi respond to increasing plant diversity[J]. Canadian Journal of Botany, 2002, 80(2): 120-130.
|
[27] |
王浩, 方燕, 刘润进, 等. 丛枝菌根中养分转运、代谢、利用与调控研究的最新进展[J]. 植物生理学报, 2018, 54(11): 1645−1658.
Wang H, Fang Y, Liu R J, et al. Recent advances in the studies of nutrient transportation, metabolism, utilization and regulation in arbuscular mycorrhizas[J]. Plant Physiology Journal, 2018, 54(11): 1645−1658.
|
[28] |
Lee E H, Eo J K, Ka K H, et al. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems[J]. Mycobiology, 2013, 41(3): 121−125. doi: 10.5941/MYCO.2013.41.3.121
|
[29] |
Liu J, Liu X, Zhang Q, et al. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels [J/OL]. AMB Express, 2020, 10(1): 200 [2020−11−17]. https://doi.org/10.1186/s13568-020-01137-w.
|
[30] |
谭英, 尹豪. 盐胁迫下根施AMF和褪黑素对紫花苜蓿生长、光合特征以及抗氧化系统的影响[J]. 草业学报, 2024, 33(6): 64−75. doi: 10.11686/cyxb2023366
Tan Y, Yin H. Effects of root application of an arbuscular mycorrhizal fungus and melatonin on the growth, photosynthetic characteristics, and antioxidant system of Medicago sativa under salt stresss[J]. Acta Prataculturae Sinica, 2024, 33(6): 64−75. doi: 10.11686/cyxb2023366
|
[31] |
Jiang F, Zhang L, Zhou J, et al. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae[J]. New Phytologist, 2021, 230(1): 304−315.
|
[32] |
Tian H, Drijber R A, Li X, et al. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.)[J]. Mycorrhiza, 2013, 23(6): 507−514. doi: 10.1007/s00572-013-0491-1
|
[33] |
Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(31): 13754−13759.
|
[34] |
Govindarajulu M, Pfeffer P E, Jin H, et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis[J]. Nature, 2005, 435: 819−823. doi: 10.1038/nature03610
|
[35] |
Bowles T M, Jackson L E, Cavagnaro T R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes[J]. Global Change Biology, 2018, 24(1): e171−e182.
|
[36] |
Ghasemi M, Zahedi M, Gheysari M, et al. Effects of inoculation with four mycorrhizal species on seed phenolic and fatty acids of sesame plants grown under different irrigation regimes[J/OL]. Scientific Reports, 2023, 13(1): 16482 [2023−11−10]. https://doi.org/10.1038/s41598-023-42375-9.
|
[37] |
van der Heijden M G, Streitwolf-Engel R, Riedl R, et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland[J]. New Phytologist, 2006, 172(4): 739−752. doi: 10.1111/j.1469-8137.2006.01862.x
|
[38] |
王浩, 吴爱姣, 刘保兴, 等. 菌根真菌多样性与植物多样性的相互作用研究进展[J]. 微生物学通报, 2020, 47(11): 3918−3932.
Wang H, Wu A J, Liu B X, et al. Interactions between mycorrhizal fungal diversity and plant diversity: a review[J]. Microbiology China, 2020, 47(11): 3918−3932.
|
[39] |
张俊英, 许永利, 刘小艳. 丛枝菌根真菌对大棚番茄连作土壤的改良效果[J]. 北方园艺, 2018, 42(3): 119−124. doi: 10.11937/bfyy.20172163
Zhang J Y, Xu Y L, Liu X Y. Improvement effect of arbuscular mycorrhizal fungi on continuous cropping tomato soil in greenhouse[J]. Northern Horticulture, 2018, 42(3): 119−124. doi: 10.11937/bfyy.20172163
|
[1] | Wu Fei, Gao Zhangwei, Zhang Ruibo, Shi Rongxi, Liu Mengjie, Hu Jian, Wang Hui, Zhou Qingping. Effects of warming on soil microbial diversity and functional potential in alpine meadows[J]. Journal of Beijing Forestry University, 2025, 47(1): 29-38. DOI: 10.12171/j.1000-1522.20240064 |
[2] | Zhang Zixuan, Meng Xiaoqian, Zhang Xinna, Xu Chengyang, Chen Tao, Wang Wenxue, Ning Qiuling. Responses of phyllosphere microbial communities in understory vegetation under plant life form and light intensity[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20250088 |
[3] | Zhao Jiaqi, Fang Jing, Tan Mingtao, Wu Shuai, Ren Yingjie, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungal colonization on Populus pseudo-cathayana × P. deltoides resistance to Lymantria dispar larvae[J]. Journal of Beijing Forestry University, 2024, 46(3): 53-59. DOI: 10.12171/j.1000-1522.20220144 |
[4] | Chen Ruting, Lu Hanwen, Zhuang Yutong, Yang Yunzhao, Luo Yuxin, Chi Defu. Effects of pesticides on soil microbial population and preliminary screening of resistant strains[J]. Journal of Beijing Forestry University, 2023, 45(5): 133-142. DOI: 10.12171/j.1000-1522.20210320 |
[5] | Cai Mengke, Han Hairong, Cheng Xiaoqin, Jing Hongyuan, Liu Li, Peng Xinhao, Shang Tianxiong. Characteristics of soil microbial community structure with different plantation ages in larch forest in Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 86-93. DOI: 10.12171/j.1000-1522.20210132 |
[6] | Wu Shuai, Jiang Dun, Ma Qinghui, Tan Mingtao, Zhao Jiaqi, Liu Xiaoxia, Meng Zhaojun, Yan Shanchun. Effects of arbuscular mycorrhizal fungi on metabolism and chemical defense of Populus alba × P. berolinensis leaves[J]. Journal of Beijing Forestry University, 2021, 43(5): 86-92. DOI: 10.12171/j.1000-1522.20200172 |
[7] | Wang Tao, Guo Yang, Su Jianyu, Xu Chunyan. Effects of Syringa pinnatifolia var. alanshanica on soil physicochemical properties, enzyme activities and microbial diversity[J]. Journal of Beijing Forestry University, 2020, 42(4): 91-101. DOI: 10.12171/j.1000-1522.20180365 |
[8] | CHEN Jie, XIE Jing, TANG Ming. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of Amorpha fruticosa under water stress.[J]. Journal of Beijing Forestry University, 2014, 36(6): 142-148. DOI: 10.13332/j.cnki.jbfu.2014.06.026 |
[9] | XU Qiu-fang, JIANG Pei-kun, WANG Qi-zan, LU Yi-tong. Effects of green manure on soil microbial properties of Phyllostachys pubescens stands under intensive management.[J]. Journal of Beijing Forestry University, 2009, 31(6): 43-48. |
[10] | ZHANG Hai-han, TANG Ming, CHEN Hui, DU Xiao-gang. Diversity of soil microbial communities in the mycorrhizosphere of five afforestation tree species in the Loess Plateau[J]. Journal of Beijing Forestry University, 2008, 30(3): 85-90. |