• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHOU Qi, ZHU Zun-ling. Effects of NaCl stress on seedling growth and mineral ions uptake, distribution and transportation of two varieties of Carpinus L.[J]. Journal of Beijing Forestry University, 2015, 37(12): 7-16. DOI: 10.13332/j.1000-1522.20140043
Citation: ZHOU Qi, ZHU Zun-ling. Effects of NaCl stress on seedling growth and mineral ions uptake, distribution and transportation of two varieties of Carpinus L.[J]. Journal of Beijing Forestry University, 2015, 37(12): 7-16. DOI: 10.13332/j.1000-1522.20140043

Effects of NaCl stress on seedling growth and mineral ions uptake, distribution and transportation of two varieties of Carpinus L.

More Information
  • Received Date: March 16, 2014
  • Published Date: December 30, 2015
  • We studied the seedling growth and the absorption, distribution and translocation of mineral nutrients including Na+, K+, Ca2+ and Mg2+ in different organs of seedlings of two Carpinus L. varieties (C. betulus and C. turczaninowii) at different levels of NaCl stress. The results showed that under salt stress, the growth of seedlings of the two varieties was significantly inhibited. As the salt concentration increased from 0.3% to 0.5%, the mortality of seedlings increased, with that of C. betulus higher than that of C. turczaninowii; the dry weight of different parts decreased with the increasing NaCl concentration, and the rate of reduction of total dry weight of C. betulus was higher than C. turczaninowii. As salt stress increased, the absorption of Na+ was increased for the two seedlings at high concentrations of salt from 0.3% to 0.5%, with the content of Na+ in C. betulus higher than that in C. turczaninowii, and Na+ in C. betulus was concentrated in the stem while that in C. turczaninowii mainly in the roots. K+ in the leaves remained a higher level, but Ca2+ and Mg2+ contents changed little. K+/Na+, Ca2+/Na+ and Mg2+/Na+ ratios in different organs decreased with increasing salt stress, and were significantly lower than the control. In salt-treated groups, ion ratios in the stem and leaves of C. turczaninowii seedlings were higher than in C. betulus. The ion-selective transport capacity from root to stem of C. betulus seedlings decreased, and that from stem to leaves dropped first and then increased with the increasing NaCl stress; however, the ion-selective transport capacity from root to leaves of C. turczaninowii seedlings was significantly higher than that of C. betulus. Comprehensive analysis showed that the seedlings of two Carpinus varieties were adversely affected by severe salt stress, resulting in the accumulation of salt ions in plants, but the ability of C. turczaninowii to keep balance of ion in the plant was higher than that of C. betulus, and the former also had stronger ability than the latter in salt tolerance.
  • [1]
    YU S W, TANG Z C. Plant physiology and molecular biology[M] . 2nd ed. Beijing: Science Press, 1998.
    [1]
    余叔文,汤章城.植物生理与分子生物学 [M] . 2版.北京:科学出版社,1998.
    [2]
    YANG S H, JI J, WANG G. Effects of salt stress on plants and the mechanism of salt tolerance[J] . World Science-Technology Research and Development,2006, 28(4): 70-76.
    [2]
    PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: a review[J] . Ecotoxicology and Environmental Safety, 2005, 60: 324-349.
    [3]
    杨少辉,季静,王罡.盐胁迫对植物的影响及植物的抗盐机理[J] .世界科技研究与发展, 2006, 28(4): 70-76.
    [3]
    JIAO Z Y, WANG B S, SHI S Z, et al. Advances in salt resistance of trees [J] . Journal of Northwest Forestry University, 2008, 23(5): 60-73.
    [4]
    教忠意,王保松,施士争,等. 林木抗盐性研究进展[J] . 西北林学院学报, 2008, 23(5): 60-73.
    [4]
    ZHAO K F. Salt resistant physiology of plant[M] . Beijing: China Science and Technology Press, 1993.
    [5]
    TEAKLE N L, REAL D, COLMER T D. Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis[J] . Plant Soil,2006, 289: 369-383.
    [5]
    ZHENG Q S, HUA C, DONG X, et al. Study of characteristic response to salt ion stresses of Salicornia europaea seedlings [J] . Acta Prataculturae Sinica, 2008, 17(6): 164-168.
    [6]
    赵可夫.植物抗盐生理[M] .北京:中国科学技术出版社, 1993.
    [6]
    LI H Y, ZHENG Q S, JIANG C Q, et al. A comparison of stress effects between chloridion and sodium ion on grain amaranth seedlings under NaCl stress [J] . Acta Prataculturae Sinica, 2010, 19(5): 63-70.
    [7]
    CAO B H, YU W W, WU L Y, et al. Salt stress effects the growth and the ionic absorption, transportation and allocation of black locust clones[J] . Journal of Shang Dong Agricultural University: Natural Science, 2005, 36(3): 353-358.
    [7]
    郑青松,华春,董鲜,等.盐角草幼苗对盐离子胁迫生理响应的特性研究[J] .草业学报, 2008, 17(6): 164-168.
    [8]
    李洪燕,郑青松,姜超强,等.籽粒苋幼苗对不同盐离子胁迫响应的比较研究[J] .草业学报, 2010, 19(5): 63-70.
    [8]
    XU X M, YE H C, LI G F. Progress in research of plant of tolerance to saline stress[J] . Chinese Journal of Applied and Environmental Biology, 2000, 6(4): 379-387.
    [9]
    曹帮华,郁万文,吴丽云,等.盐胁迫对刺槐无性系生长和离子吸收、运输、分配的影响[J] .山东农业大学学报:自然科学版, 2005, 36(3): 353-358.
    [9]
    YIAO R L, FANG S Z. Effect of NaCl stress and Ca2+ regulation on ion distribution in root tissues of Cyclocarya paliurus seedling[J] . Journal of Plant Resources and Environment, 2007, 16(2): 22-26.
    [10]
    WANG B, SONG F B, ZHANG J C. Advances in study of salt stress tolerance in plants[J] . System Sciences and Comprehensive Studies in Agriculture, 2007,23(2):212-216.
    [10]
    MAASTHUIS F J M, AMTMANN A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios[J] . Annals of Botany, 1999, 84:123-133.
    [11]
    许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J] .应用与环境生物学报, 2000, 6(4): 379-387.
    [11]
    ZHOU Z. Introduction to the worlds major timber species[M] .Beijing: China Forestry Publishing House,1997:192-193.
    [12]
    姚瑞玲,方升佐. NaCl胁迫及钙调节对青钱柳根部组织离子分布的影响[J] .植物资源与环境学报, 2007, 16(2): 22-26.
    [12]
    ZHU Z L, XU Y Y. Research on Carpinus betulus reproduction[J] . Journal of Anhui Agricultural University,2012,39(1):88-91.
    [13]
    王波,宋凤斌,张金才.植物耐盐性研究进展[J] .农业系统科学与综合研究, 2007, 23(2): 212-216.
    [13]
    ZHU Z L,XU Y Y, WANG S. Structure changes of Carpinus betulus seed under fluctuating temperature stratification[J] . Journal of Northeast Forestry University, 2013,41(7): 1-5.
    [14]
    ZHU Z L, XU Y Y, LING Q M. Changes of endogenous hormones content during the stratification of Carpinus betulus seeds[J] . Journal of Shanghai Jiaotong University:Agricultural Science, 2013, 31(5): 50-53.
    [14]
    周正.世界主要用材树种概论[M] .北京:中国林业出版社,1997:192-193.
    [15]
    ZHU F S.Hornbeam can be bonsai[J] . Garden, 2004(10): 49.
    [15]
    祝遵凌,许园园.欧洲鹅耳枥繁殖技术研究[J] .安徽农业大学学报, 2012, 39(1): 88-91.
    [16]
    CHEN Z D, XING S P, LIANG H X, et al. Morphogenesis of female reproductive organs in Carpinus turczaninowii and Ostryopsis davidiana (Betulaceae)[J] . Acta Botanica Sinica, 2001, 43(11): 1110-1114.
    [16]
    ZHU Z L, LIN Q M. Formative arts and landscape application of european hornbeam[J] . Advanced Materials Research,2012,461:620-623.
    [17]
    ZHU Z L,JING J B. Advances in study of Carpinus L[J] . Forestry Science and Technology, 2013, 27(3): 10-14.
    [17]
    祝遵凌,许园园,王飒.欧洲鹅耳枥种子变温层积过程中结构的变化[J] .东北林业大学学报, 2013,41(7): 1-5.
    [18]
    ZHENG Q S,WANG R L,LIU Y L. Effects of Ca2+ on absorption and distribution of ions in salt-treated cotton seedlings[J] .Acta Phytophysiologica Sinica,2001, 27(4):325-330.
    [18]
    祝遵凌,许园园,林庆梅.欧洲鹅耳枥种子层积过程中内源激素含量的变化[J] .上海交通大学学报:农业科学版,2013,31(5): 50-53.
    [19]
    朱峰山.鹅耳枥亦可做盆景[J] .园林, 2004(10): 49.
    [19]
    WU C L, ZHOU C L, YIN J L, et al. NaCl stress on the growth, ion uptake and transport of Helianthus tuberosus L. seedlings[J] . Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(11): 2289-2296.
    [20]
    陈之端,邢树平,梁汉兴,等.鹅耳枥和虎榛子(桦木科)雌性生殖器官的形态发生[J] . 植物学报, 2001, 43(11): 1110-1114.
    [20]
    LI Y Q, FANG S Z, YAO R L, et al.Effects of NaCl stress on ion distribution, absorption and transportation in Cyclocarya paliurus seedling from different provenances[J] . Journal of Plant Resources and Environment, 2007, 16(4): 29-33.
    [21]
    祝遵凌,金建邦.鹅耳枥属植物研究进展[J] .林业科技开发, 2013, 27(3): 10-14.
    [21]
    ZHANG H X, LIU Z X,LIU Q F. Seedling growth and salt tolerance of tree species under NaCl stress[J] . Acta Ecologica Sinica, 2009, 29(5): 2263-2271.
    [22]
    郑青松,王仁雷,刘友良.钙对盐胁迫下棉苗离子吸收分配的影响[J] .植物生理学报, 2001, 27(4): 325-330.
    [22]
    CHENG J, ZHANG X P, FANG Y M. Effects of different NaCl stress on several physiological characteristics and seedling growth of Alnus rubrat[J] . Chinese Agricultural Science Bulletin, 2010, 26(6): 142-145.
    [23]
    吴成龙,周春霖,尹金来,等.NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响[J] .西北植物学报,2006, 26(11): 2289-2296.
    [23]
    HAN Z P, GUO S R, ZHENG R N, et al. Effect of salinity on distribution of ions in mini-watermelon seedlings[J] . Plant Nutrition and Fertilizer Science, 2013, 19(4): 908-917.
    [24]
    李彦强,方升佐,姚瑞玲,等.NaCl胁迫对不同种源青钱柳幼苗离子分配、吸收与运输的影响[J] .植物资源与环境学报, 2007, 16(4): 29-33.
    [24]
    YU B J,LUO Q Y,LIU Y L. Effects of salt stress on growth and ionic distribution of salt-born Glycine soja[J] . Acta Agronomica Sinica, 2001, 27(6): 776-780.
    [25]
    WANG S F, HU Y X, LI Z L, et al.Effects of NaCl stress on growth and mineral ion uptake, transportation and distribution of Quercus virginiana[J] . Acta Ecologica Sinica, 2010, 30(17): 4609-4616.
    [25]
    张华新,刘正祥,刘秋芳.盐胁迫下树种幼苗生长及其耐盐性[J] .生态学报, 2009, 29(5): 2263-2271.
    [26]
    CHEN S L, LI J K, YIN W L, et al.Tissue and cellular K+, Ca2+ and Mg2+ of poplar under saline salt stress conditions[J] . Jorurnal of Beijing Forestry University, 2002, 24(5): 84-88.
    [26]
    VICENTE O, BOSCAIU M, NARANJO M A, et al. Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae) [J] . Journal of Arid Environments, 2004, 58: 463-481.
    [27]
    LEVITT J. Response of plants to environmental stress[M] . New York: Academic Press, 1980: 365-434.
    [27]
    GU D X, CHEN S L, GU L J, et al. Impacts of NaCl stress on Oligostachyum lubricum cell membrane permeability and mineral ion uptake, transportation, and allocation[J] . Chinese Journal of Ecology, 2011, 30(7): 1417-1422.
    [28]
    WANG R L,HUA C,LUO Q Y, et al. Na+ and Cl- accumulation in chloroplasts results in a decrease in net photosynthetic rate in rice leaves under salt stress[J] . Journal of Plant Physiology and Molecular Biology, 2002, 28(5): 385-390.
    [28]
    程钧,张晓平,方炎明.不同浓度NaCl胁迫对红桤木幼苗生长及部分生理指标的影响[J] .中国农学通报,2010,26(6): 142-145.
    [29]
    WANG R, CHEN G L, SONG W, et al. Effects of NaCl stress on cation contents in seedlings of two pumpkin varieties[J] . Journal of Plant Physiology and Molecular Biology, 2006, 32(1): 94-98.
    [29]
    韩志平, 郭世荣, 郑瑞娜,等.盐胁迫对小型西瓜幼苗体内离子分布的影响[J] .植物营养与肥料学报,2013,19(4): 908-917.
    [30]
    LPEZ-AGUILAR R, ORDUO-CRUZ A, LUCERO-ARCE A, et al.Response to salinity of three grain legumes for potential cultivation in arid areas[J] . Soil Science and Plant Nutrition, 2003, 49(3): 329-336.
    [30]
    YANG L F,ZHU Y L,HU C M, et al. Effects of salt stress on biomass formation and ion partition in hydroponicaly-cultured grafted cucumber[J] . Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(12): 2500-2505.
    [31]
    NING J F, ZHENG Q S, YANG S H, et al.Impact of high salt stress on Apocynum venetum growth and ionic homeostasis[J] . Chinese Journal of Applied Ecology, 2010, 21(2): 325-330.
    [31]
    YAN X F,SUN G R. Several nitrogen nutrition on soluble osmotica of Puccinellia tenuiflora seedling under salinity stress[J] .Plant Study,1999,19(3):374-375.
    [32]
    於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响[J] .作物学报,2001,27(6): 776-780.
    [33]
    王树凤,胡韵雪,李志兰,等.盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响[J] .生态学报,2010,30(17): 4609-4616.
    [34]
    PREZ-ALFOCEA F, BALIBREA M E, ALARCN J J, et al.Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species[J] . Journal of Plant Physiology,2000, 156(3): 367-374.
    [35]
    陈少良, 李金克, 尹伟伦,等. 盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J] .北京林业大学学报, 2002, 24(5): 84-88.
    [36]
    顾大形,陈双林,顾李俭,等.盐胁迫对四季竹细胞膜透性和矿质离子吸收、运输和分配的影响[J] .生态学杂志,2011,30(7): 1417-1422.
    [37]
    POUSTINI K, SIOSEMARDEH A. Ion distribution in wheat cultivars in response to salinity stress[J] . Field Crops Res,2004, 85: 125-133.
    [38]
    王仁雷,华春,罗庆云,等. 盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降[J] .植物生理与分子生物学学报,2002,28(5): 385-390.
    [39]
    王冉, 陈贵林, 宋炜, 等. NaCl胁迫对两种南瓜幼苗离子含量的影响[J] . 植物生理与分子生物学学报, 2006, 32(1): 94-98.
    [40]
    SANTA-CRUZ A, ACOSTA M, RUS A, et al. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species[J] . Plant Physiol Biochem,1999, 37(1): 65-71.
    [41]
    DASGAN H Y, AKTAS H, ABAK K, et al. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses [J] .Plant Sci,2002,163:695-703.
    [42]
    杨立飞,朱月林,胡春梅,等.NaCl胁迫对营养液栽培嫁接黄瓜生物量及离子分布的影响[J] .西北植物学报,2006,26(12): 2500-2505.
    [43]
    宁建凤,郑青松,杨少海,等.高盐胁迫对罗布麻生长及离子平衡的影响[J] .应用生态学报, 2010,21(2): 325-330.
  • Related Articles

    [1]Li Yuting, Ma Aiyun, Miao Zheng, Hao Yuanshuo, Dong Lihu. Effects of neighborhood competition on biomass and distribution of Larix olgensis[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230322
    [2]Zhao Qingxia, Xia Yufang. Effects of mowing modes on biomass, crude protein and crude fat contents of Broussonetia papyrifera in karst area[J]. Journal of Beijing Forestry University, 2023, 45(6): 62-68. DOI: 10.12171/j.1000-1522.20210425
    [3]Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. DOI: 10.12171/j.1000-1522.20210037
    [4]Yao Junxiu, Chen Ganniu, Li Shanwen, Qiao Yanhui, Zhong Weiguo, Li Qinghua, Dong Yufeng, Wu Dejun. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12-20. DOI: 10.12171/j.1000-1522.20190462
    [5]Xing Lei, Xue Hai-xia, Li Qing-he, Gao Ting-ting. Scaling from leaf to whole plant in biomass and nitrogen content of Nitraria tangutorum seedlings[J]. Journal of Beijing Forestry University, 2018, 40(2): 76-81. DOI: 10.13332/j.1000-1522.20170338
    [6]LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374
    [7]DONG Dian, LIN Tian-xi, TANG Jing-yi, LIU Jing-chen, SUN Guo-wen, YAO Jie, CHENG Yan-xia. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54-63. DOI: 10.13332/j.cnki.jbfu.2014.04.013
    [8]ZHAO Xi-yang, WANG Jun-hui, ZHANG Jin-feng, ZHANG Shou-gong, ZHANG Zeng-shun, MA Jian-wei, YUN Hui-ling, LI Kui-you. Variation analysis on chlorophyll fluorescence and growth traits of Catalpa bungei clones[J]. Journal of Beijing Forestry University, 2012, 34(3): 41-47.
    [9]DUAN Wen-xia, ZHU Bo, LIU Rui, CHEN Shi, ZHOU Yu-ping, CHEN Fang. Biomass and soil carbon dynamics in Cryptomeria fortunei plantations[J]. Journal of Beijing Forestry University, 2007, 29(2): 55-59.
    [10]CHENG Tang-ren, MA Qin-yan, FENG Zhong-ke, LUO Xu. Research on forest biomass in Xiaolong Mountains, Gansu Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 31-36. DOI: 10.13332/j.1000-1522.2007.01.006
  • Cited by

    Periodical cited type(10)

    1. 苏芝凤,黄德周,朱芷仪,陈荣枢,代廷皓,梁建宏,朱婧. 亚热带森林不同土壤类型团聚体酶活性及化学计量特征的差异. 环境科学. 2025(03): 1716-1728 .
    2. 陈荣枢,王汝儒,孙佳豪,黄玲,杨思娴,蒲纪龙,黄慧敏,朱婧. 漓江流域海拔、土壤及植被对土壤养分和酶化学计量比的影响. 广西植物. 2023(02): 242-252 .
    3. 王吕,马庆兵,姜华,寸兴刚,段新慧,何承刚. 云南寻甸县湿地草甸植被、土壤因子和微生物的特征. 草业科学. 2023(07): 1754-1765 .
    4. 郑武扬,王艳霞,王月江,冯刚刚. 石漠化治理区不同优势树种根际土壤酶活性与土壤理化性质和微生物数量的关系. 东北林业大学学报. 2021(01): 96-100 .
    5. 张艳,王冬梅. 北方土石山区不同植被恢复模式土壤酶活性研究. 农业研究与应用. 2021(01): 42-46 .
    6. 涂志华,周凌峰,黄艳萍,陈夙怡,陈金辉,李胜男. 海南岛黎母山国家自然保护区热带云雾林土壤酶活性的根际效应. 水土保持通报. 2021(03): 1-7 .
    7. Zhouzhou Fan,Shuyu Lu,Shuang Liu,Zhaorong Li,Jiaxin Hong,Jinxing Zhou,Xiawei Peng. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China. Journal of Forestry Research. 2020(05): 1949-1957 .
    8. 郑武扬,王艳霞,王月江,冯刚刚. 喀斯特石漠化区不同植被治理模式对土壤质量的影响. 西部林业科学. 2020(04): 41-47 .
    9. 李永双,范周周,国辉,周金星,彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响. 中国岩溶. 2020(06): 854-862 .
    10. 魏安琪,魏天兴,刘海燕,王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析. 北京林业大学学报. 2019(04): 88-98 . 本站查看

    Other cited types(12)

Catalog

    Article views (2056) PDF downloads (28) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return