• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHANG Ning, FENG Yue-wen, ZHANG Xiao-li, FAN Jiang-chuan. Extracting individual tree crown by combining spectral and texture features from aerial images[J]. Journal of Beijing Forestry University, 2015, 37(3): 13-19. DOI: 10.13332/j.1000-1522.20140309
Citation: ZHANG Ning, FENG Yue-wen, ZHANG Xiao-li, FAN Jiang-chuan. Extracting individual tree crown by combining spectral and texture features from aerial images[J]. Journal of Beijing Forestry University, 2015, 37(3): 13-19. DOI: 10.13332/j.1000-1522.20140309

Extracting individual tree crown by combining spectral and texture features from aerial images

More Information
  • Received Date: September 14, 2014
  • Revised Date: November 07, 2014
  • Published Date: March 30, 2015
  • Aero photogrammetry has been used in forestry successfully for improving the efficiency in forest resources survey with the development and progress of it. However, the results in most studies in single tree crown extraction were biased because the merely image spectral information was considered. Individual tree crown can be extracted by jointly combining the texture and spectral features of the aerial images, then determining the optimal segmentation scale while using object-oriented image segmentation method and multiple comparing the experimental results, and defining the information scope of spectral and texture features with normal distribution method. Using aerial images of Jiufeng National Forest Park of Beijing in 2012 as the data source, and using ENVI5.0 as the data processing platform to segment the images, then extract 32 trees’ crown in the test area, and analyze accuracy combined with the traditional field measured data and stereo image measured data. The results showed that the accuracy could achieve 90.05% by the proposed method, it is close to the accuracy by traditional stereo image measure, and data acquisition is quick, so it meets the basic needs of the forestry survey.
  • [1]
    赵鑫.基于数字航空像片样木的测树因子的估测研究[D].哈尔滨:东北林业大学,2013.
    [1]
    ZHAO X. Estimating factors of sample trees based on digital aerial photographs [D]. Harbin: Northeast Forestry University, 2013.
    [2]
    周淑芳.基于机载LIDAR与航空像片的单木树高提取研究[D].哈尔滨:东北林业大学,2007.
    [2]
    ZHOU S F. Extracting of single tree height based on airborne LiDAR and aerial photograph [D]. Harbin: Northeast Forestry University,2007.
    [3]
    CAO L, DAI J S, XU J X, et al. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology [J].Journal of Beijing Forestry University, 2014, 36(5):13-21.
    [3]
    曹林,代劲松,徐建新,等.基于机载小光斑LiDAR技术的亚热带森林参数信息优化提取[J].北京林业大学学报,2014,36(5): 13-21.
    [4]
    周坚华.城市绿量测算模式及信息系统[J].地理学报,2001,56(1):14-23.
    [4]
    ZHOU J H. Theory and practice on database of three-dimensional vegetation quantity [J]. Acta Geographica Sinica, 2001,56(1):14-23.
    [5]
    张浩,王祥荣.城市绿地的三维生态特征及其生态功能[J].中国环境科学,2001,21(2):101-104.
    [5]
    ZHANG H, WANG X R. Three-dimensional ecological characters of urban green space and its ecological function [J].China Environmental Science,2001,21(2):101-104.
    [6]
    胥利红.森林参数数字摄影测量提取技术的应用研究[D].哈尔滨:东北林业大学,2010.
    [6]
    XU L H. Digital photogrammetric forest parameters extraction technology application research [D]. Harbin: Northeast Forestry University,2010.
    [7]
    WANG J, FENG Z K. Stand tree height measured by digital photogrammetry [J]. Science of Surveying and Mapping, 2011,36(6):77-79.
    [7]
    王佳,冯仲科.航空数字摄影测量对林分立木测高及精度分析[J].测绘科学,2011,36(6):77-79.
    [8]
    WU A B. Acquisition and optimization of stand spatial structure research based on high-resolution image [D].Beijing: Beijing Forestry University,2012.
    [8]
    武爱彬.基于高分辨率遥感图像获取与优化林分空间结构研究[D].北京:北京林业大学,2012.
    [9]
    刘晓双,黄建文,胡红波.高空间分辨率遥感的单木树冠自动提取方法与应用[J].浙江林学院学报,2010,27(1):126-133.
    [9]
    LIU X S, HUANG J W, HU H B.Research progress in the methods and applications of individual tree crown’s automatic extraction by high spatial resolution remote sensing [J]. Journal of Zhejiang Forestry College, 2010,27(1):126-133.
    [10]
    韦雪花.轻小型航空遥感森林几何参数提取研究[D]. 北京:北京林业大学,2013.
    [10]
    WEI X H.Light small airborne remote sensing forest geometric parameters extraction research [D]. Beijing: Beijing Forestry University,2013.
    [11]
    崔少伟.基于高分辨率遥感数据单木树冠提取研究[D]. 哈尔滨:东北林业大学,2011.
    [11]
    CUI S W. Extraction research single tree crown based on high resolution remote sensing data [D]. Harbin: Northeast Forestry University, 2011.
    [12]
    刘清旺,李增元,陈尔学,等.利用机载激光雷达数据提取单株木树高和树冠[J].北京林业大学学报,2008,30(6):83-89.
    [12]
    LIU Q W, LI Z Y, CHEN E X,et al. Extracting height and crown of individual tree using airborne LIDAR data [J]. Journal of Beijing Forestry University, 2008,30(6):83-89.
    [13]
    ZHANG H, WANG H Q, SUN X. Tree crown extraction combining color and texture feature [J].Optical Technique, 2008,34(4):613-616.
    [13]
    BLAZQUEZ C H. Computer-based image analysis and tree counting with aerial color infrared photography [J]. Journal of Imaging Technology,1989,15(4):163-168.
    [14]
    TIAN X G. Extraction of high-resolution remote sensing image information by object-oriented method [D].Beijing: Chinese Academy of Survey and Mapping,2007.
    [14]
    TARP J. Automatic stem mapping in three dimensions by template matching from aerial photographs[J]. Scandinavian Journal of Forest Research, 2002,17(4):359-368.
    [15]
    CHANG S, SONG E P. The improvement and application in GIS of radial algorithm [J].Journal of Hubei Institute for Nationalities: Natural Science Edition, 2004,22(1):91-93.
    [15]
    张慧,王宏琦,孙显.结合颜色和纹理特这的树冠提取方法[J].光学技术,2008,34(4):613-616.
    [16]
    田新光.面向对象高分辨率遥感影像信息提取[D].北京:中国测绘科学研究院,2007.
    [17]
    常胜,宋鄂平.射线法的完善及其在地理信息系统中的应用[J].湖北民族学院学报:自然科学版, 2004,22(1):91-93.
  • Related Articles

    [1]Yuan Ying, Wang Xuefeng, Shi Mengmeng, Wang Peng, Chen Xingjing. Prediction of relative chlorophyll content in Hopea hainanensis based on multispectral frequency domain features[J]. Journal of Beijing Forestry University, 2023, 45(11): 42-52. DOI: 10.12171/j.1000-1522.20230113
    [2]Su Kai, Yu Qiang, Sun Xiaoting, Yue Depeng. Effects of leaf dust retention on spectral characteristics of Euonymus japonicus[J]. Journal of Beijing Forestry University, 2021, 43(11): 40-49. DOI: 10.12171/j.1000-1522.20200213
    [3]Wu Yanshuang, Zhang Xiaoli. Object-oriented tree species classification with multi-scale texture features based on airborne hyperspectral images[J]. Journal of Beijing Forestry University, 2020, 42(6): 91-101. DOI: 10.12171/j.1000-1522.20190155
    [4]Liu Jiazheng, Wang Xuefeng, Wang Tian. Image recognition of tree species based on multi feature fusion and CNN model[J]. Journal of Beijing Forestry University, 2019, 41(11): 76-86. DOI: 10.13332/j.1000-1522.20180366
    [5]Zhang Ying, Zhang Xiaoli, Li Hongzhi, Liu Huiling. A comparative analysis on hyperspectral land-cover classification based on frequency spectrum and spectral characteristics[J]. Journal of Beijing Forestry University, 2018, 40(7): 1-8. DOI: 10.13332/j.1000-1522.20170342
    [6]LIU Huai-peng, AN Hui-jun, WANG Bing, ZHANG Qiu-liang. Tree species classification using WorldView-2 images based on recursive texture feature elimination[J]. Journal of Beijing Forestry University, 2015, 37(8): 53-59. DOI: 10.13332/j.1000-1522.20140311
    [7]ZHANG Yi-zhuo, MA Lin, XU Lei1, YU Hui-ling. Wood board texture classification based on genetic fusion of wavelet and curvelet features.[J]. Journal of Beijing Forestry University, 2014, 36(2): 119-124.
    [8]GUAN Feng-ying, DENG Wang-hua, FAN Shao-hui. Spectral characteristics of Phyllostachys pubescens stand and its differential analysis with typical vegetation[J]. Journal of Beijing Forestry University, 2012, 34(3): 31-35.
    [9]JI Zhi-wei, WANG Hang-jun, HE Tao, YIN Jian-xin. A morphological feature extraction method of wood pores based on an improved growing region algorithm[J]. Journal of Beijing Forestry University, 2011, 33(3): 64-69.
    [10]LI Jun, YANG Qiu-zhen, HUANG Jing-feng, WANG Yan, GE Jian-ming, FENG Chun. Impact of Clostera anachoreta and Micromelalopha troglodyta insect-induced damage on the hyperspectral features of Populus×canadesis cv.‘I-214’[J]. Journal of Beijing Forestry University, 2007, 29(6): 148-155. DOI: 10.13332/j.1000-1522.2007.06.021
  • Cited by

    Periodical cited type(16)

    1. 谢运鸿,孙钊,丁志丹,罗蜜,李芸,孙玉军. 基于Mask R-CNN和迁移学习的无人机遥感影像杉木单木树冠提取. 北京林业大学学报. 2024(03): 153-166 . 本站查看
    2. 孙国强. 车载行道树点云单体化及几何属性提取研究. 测绘通报. 2022(S2): 189-194 .
    3. 陈巡,钟凤媛,刘雅鑫,郑梦婷. 基于ModelBuilder的图斑相似度分析. 现代信息科技. 2021(02): 66-69+75 .
    4. 赵勋,岳彩荣,李春干,谷雷,张国飞. 基于DOM航空影像单木树冠提取. 西北林学院学报. 2020(02): 160-168 .
    5. 金忠明,曹姗姗,王蕾,孙伟. 天山云杉林无人机可见光影像树冠信息提取方法研究. 林业资源管理. 2020(01): 125-135 .
    6. 杨全月,董泽宇,马振宇,吴悠,崔琪,卢昊. 基于SfM的针叶林无人机影像树冠分割算法. 农业机械学报. 2020(06): 181-190 .
    7. 金忠明,曹姗姗,王蕾,孙伟. 基于U-Net和分水岭算法的无人机单木树冠提取方法. 西北林学院学报. 2020(06): 194-204 .
    8. 朱雅丽,张绘芳,张景路,地力夏提·包尔汉. 基于无人机遥感的胡杨地上生物量估测模型构建. 林业资源管理. 2019(02): 80-87 .
    9. 孙振峰,张晓丽,李霓雯. 机载与星载高分遥感影像单木树冠分割方法和适宜性对比. 北京林业大学学报. 2019(11): 66-75 . 本站查看
    10. 李越帅,郑宏伟,罗格平,杨辽,王伟胜,桂东伟. 集成U-Net方法的无人机影像胡杨树冠提取和计数. 遥感技术与应用. 2019(05): 939-949 .
    11. 董新宇,李家国,陈瀚阅,赵磊,张黎明,邢世和. 无人机遥感影像林地单株立木信息提取. 遥感学报. 2019(06): 1269-1280 .
    12. 李玉兵,王鹏. 车载激光点云数据中行道树三维信息自动提取研究. 测绘与空间地理信息. 2018(08): 40-43 .
    13. 袁志超,张家盛,李士美,王永涛,崔孝平. 青岛崂山黑松立木结构特征模型. 防护林科技. 2018(04): 13-18 .
    14. 刘祖瑾,杨玲,段琳琳,龚娇娇,乔贤贤. 1种结合FCM聚类算法与粗糙集的林木提取方法. 江苏农业科学. 2018(16): 185-190 .
    15. 冯静静,张晓丽,刘会玲. 基于灰度梯度图像分割的单木树冠提取研究. 北京林业大学学报. 2017(03): 16-23 . 本站查看
    16. 李祥,郑淯文,戴楚彦,林文树. 基于无人机影像的森林信息获取研究进展. 世界林业研究. 2017(04): 41-46 .

    Other cited types(27)

Catalog

    Article views (1889) PDF downloads (45) Cited by(43)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return