• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
WANG Jing-hong, CAI Ti-jiu, GE Shu-sheng, LIU Jing-xu, QU Cun-yong, SUN Xiao-xin. Effects of Mohe-Daqing oil pipeline project construction on typical forest ecosystems in Daxing'an Mountains.[J]. Journal of Beijing Forestry University, 2015, 37(10): 58-66. DOI: 10.13332/j.1000-1522.20150086
Citation: WANG Jing-hong, CAI Ti-jiu, GE Shu-sheng, LIU Jing-xu, QU Cun-yong, SUN Xiao-xin. Effects of Mohe-Daqing oil pipeline project construction on typical forest ecosystems in Daxing'an Mountains.[J]. Journal of Beijing Forestry University, 2015, 37(10): 58-66. DOI: 10.13332/j.1000-1522.20150086

Effects of Mohe-Daqing oil pipeline project construction on typical forest ecosystems in Daxing'an Mountains.

More Information
  • Received Date: March 23, 2015
  • Published Date: October 30, 2015
  • Mohe-Daqing section of the China-Russia oil pipeline project runs through Daxing’an Mountains and the Songnen Plain. Project construction would disturb vegetation and soil of the forests. In this study, we measured soil properties, plant biomass and species biodiversity in the operational region of the oil pipeline and the non-operational region in theRhododendron dauricum--Betula platyphylla forest, Vaccinum vitis-idaea--Larix gmelini forest and Lespedeza bicolor--Pinus sylvestris var. mongolica forest. The results showed that: 1) Pipeline construction had no effects on soil pH; however, total P concentration decreased significantly (P<0.05). Total N concentration decreased significantly (P<0.05) in the soil layer of 0--10 cm; however, it increased in the soil layers of 10--20 cm and 20--30 cm in all of the three forests. Total K concentration decreased significantly (P<0.05) in the soil layers of 0--10 cm and 10--20 cm in R. dauricum--B. platyphylla forest; however, there was no change in the total K concentration (P0.05) after pipeline construction in V. vitis-idaea--L. gmelini forest and L. bicolor--P. sylvestris var. mongolica forest. 2) Tree biomass decreased significantly (P<0.05) in R. dauricum--B. platyphylla forest. However, shrub and herb biomass did not change significantly (P0.05) in this forest. Tree and shrub biomass decreased significantly (P<0.05) in V. vitis-idaea--L. gmelini forest and L. bicolor--P. sylvestris var. mongolica forest. In contrast, herb biomass increased significantly (P0.05) in these two forests. 3) Oil pipeline project construction had more effects on tree and shrub species diversity than on the herb species diversity. Tree and shrub species biodiversity decreased at all sites after construction except for shrub species biodiversity in the V. vitis-idaea--L. gmelini forest. Herb species biodiversity increased in L. bicolor--P. sylvestris var. mongolica forest; however, it decreased in R. dauricum--B. platyphylla forest and V. vitis-idaea--L. gmelini forest. Our results indicated that restoration of the vegetation was difficult after oil pipeline project construction due to the damage to both vegetation and soil. More artificial measures are necessary to restore the vegetation. Otherwise, the degraded ecosystem would be harmful to the pipeline at sites with poor soil textures.
  • [1]
    PU M, MA J G. Progress of China’s oil and gas pipeline development in 2010[J]. International Petroleum Economics, 2011,19(3):26-34.
    [1]
    TUBB R. Pipeline and gas journal’s 2010 international pipeline construction report[J]. Pipeline Gas Journal, 2010,237(2):46-49.
    [2]
    LI G Y, JIN H J, SHENG Y, et al. Recent advances in frozen ground engineering geology survey along the China-Russia crude oil pipeline route (Mo’he-Daqing section) [J]. Journal of Glaciology and Geocryology, 2008,30(1):170-175.
    [2]
    蒲明, 马建国. 2010年我国油气管道新进展[J]. 国际石油经济, 2011,19(3):26-34.
    [3]
    CHEN L D, GAO Q C. Chance and challenge for China on ecosystem management: lessons from the west-to-east pipeline project construction[J]. Ambio, 2006,35:91-93.
    [3]
    YANG S Z, JIN H J, JI Y J, et al.Revegetation in permafrost regions along a linear project[J]. Journal of Glaciology and Geocryology, 2008,30(5):875-882.
    [4]
    LAURANCE W F. New pipeline threatens Ecuadorian rainforest[J]. Trends in Ecology Evolution, 2001,16:429-430.
    [4]
    CHEN H, LI S C, ZHENG D. Features of ecosystems alongside Qinghai-Xizang highway and railway and the impacts of road construction on them[J]. Journal of Mountain Science, 2003,21(5):559-567.
    [5]
    WEI J F. Study of vegetation restoration and revegetation during the constructing of the Qinghai-Tibet railway[J]. Journal of Glaciology and Geocryology, 2003,25(Suppl.1):195-198.
    [5]
    YU X, WANG G, ZOU Y, et al. Effects of pipeline construction on wetland ecosystems: Russia-China oil pipeline project (Mohe-Daqing section)[J]. Ambio, 2010,39:447-450.
    [6]
    ZHOU Y L. Vegetation of Da Hinggan Ling in China[M]. Beijing: Science Press, 1991.
    [6]
    NAETH M A, MCGILL W B, BAILEY A W. Persistence of changes in selected soil chemical and physical properties after pipeline installation in solonetzic native rangeland[J]. Canadian Journal of Soil Science, 1987,67:747-763.
    [7]
    SOON Y K, ARSHAD M A, RICE W A, et al. Recovery of chemical and physical properties of boreal plain soils impacted by pipeline burial[J]. Canadian Journal of Soil Science, 2000,80(3):489-497.
    [7]
    LU R K.Soil and agricultural chemistry analysis[M]. Beijing: Chinese Agricultural Science and Technology Press, 1999.
    [8]
    XU Q X. Effect of thinng on soil physicochemical property and carbon storage of the natural Larix gmelinii forest in Great Xing’an Mountains[D]. Harbin: Northeast Forestry University, 2013.
    [8]
    OLSON E R, DOHERTY J M. The legacy of pipeline installation on the soil and vegetation of southeast Wisconsin wetlands[J]. Ecological Engineering, 2012,39(7):53-62.
    [9]
    KNOTT D M, WENNER E L, WENDT P H. Effects of pipeline construction on the vegetation and macrofauna of two South Carolina, USA salt marshes[J]. Wetlands, 1997,17(1):65-81.
    [9]
    WANG C, GAO H Z, ZANG Y Q. Study on the biomass of Betula platyphylla forest tree[J]. Forestry Science Technology, 2010,35(1):7-9.
    [10]
    XIAO J, WANG Y, SHI P, et al. Potential effects of large linear pipeline construction on soil and vegetation in ecologically fragile regions[J]. Environmental Monitoring Assessment, 2014,186(11):8037-8048.
    [10]
    NING B. Study on stand structure dynamic and biomass for Mongolian scots pine in plantation[D].Harbin: Northeast Forestry University, 2007.
    [11]
    OLANDER L P, SCATENA F N, SILVER W L. Impacts of disturbance initiated by road construction in a subtropical cloud forest in the Luquillo Experimental Forest, Puerto Rico[J]. Forest Ecology Management, 1998,109:33-49.
    [11]
    MA K P, HUANG J H, YU S L, et al. Plant community diversity in Dongling Mountain, Beijing, China Ⅱ: species richness, evenness and species diversities[J]. Acta Ecologica Sinica, 1995,15(3):268-277.
    [12]
    李国玉, 金会军, 盛煜, 等. 中国—俄罗斯原油管道工程(漠河—大庆段)冻土工程地质考察与研究进展[J]. 冰川冻土,2008,30(1):170-175.
    [12]
    CUI J, CAI T J, YANG Y, et al.Effects of Mohe-Daqing oil pipeline project on soil nutrient in the areas along the line[J]. Journal of Soil and Water Conservation, 2013,27(3):143-149.
    [13]
    GU H Y, JIN J B, CHEN X W, et al. Effects of logging disturbance on soil chemical properties of Larix gmelini forests in the northern slope on Greater Hinggan Mountains[J]. Chinese Journal of Soil Science, 2009,40(2): 272-275.
    [13]
    REID N B, NAETH M A. Establishment of a vegetation cover on tundra kimberlite mine tailings 2: a field study[J]. Restoration Ecology, 2005,13(4):602-608.
    [14]
    杨思忠, 金会军, 吉延峻, 等. 寒区线性工程沿线冻土区的植被恢复[J]. 冰川冻土, 2008,30(5):875-882.
    [14]
    SHEN W S, ZHANG H, ZOU C X, et al.Effects of the Qinghai-Tibet railway construction on ecosystems and the prediction methods for restoration[J]. Chinese Science Bulletin, 2004,49(9):909-914.
    [15]
    YU L F, ZHU S Q, YE J Z, et al. Dynamics of a degraded karst forest in the process of natural restoration[J]. Scientia Silvea Sinicae, 2002,38(1):1-7.
    [15]
    陈辉, 李双成, 郑度. 青藏公路铁路沿线生态系统特征及道路修建对其影响[J]. 山地学报, 2003,21(5):559-567.
    [16]
    WANG X G, LI X Z, KONG F H, et al.Model of vegetation restoration under natural regeneration and human interference in the burned area of northern Daxinganling[J]. Chinese Journal of Ecology, 2003,22(5): 30-34.
    [16]
    JORGENSON M T, JOYCE M R. Six strategies for rehabilitating land disturbed by oil development in Arctic Alaska[J]. Arctic, 1994,47(4):374-390.
    [17]
    WU X Y, LU H, WANG X J. Changes of plant diversity, biomass, and soil nutrients in cutting slash of artificial sand-fixation forest after fallowing and natural restoration[J]. Chinese Journal of Ecology, 2007,26(7): 978-982.
    [17]
    魏建方. 青藏铁路建设中高寒草原植被恢复与再造技术的研究[J]. 冰川冻土, 2003,25(增刊1):195-198.
    [18]
    XIANG W H, TIAN D L, YAN W D, et al. Biomass dynamic and nutrient accumulation of natural restoration at early stage after fallow in clear-cutting forestland of Chinese fir plantation[J]. Acta Ecologica Sinica, 2003,23(4):695-702.
    [18]
    JIN H, YU Q, LU L, et al. Degradation of permafrost in the Xing'anling Mountains, northeastern China[J]. Permafrost and Periglacial Processes, 2007,18:245-258.
    [19]
    周以良. 中国大兴安岭植被[M]. 北京: 科学出版社, 1991.
    [19]
    GUAN K Z, ZHANG D J. Effects of fire on vegetation in Daxing'an Mountains [J]. Environmental Science,1990,11(5):82-88.
    [20]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.
    [20]
    WANG X G, LI X Z, HE H S, et al.Postfire succession of larch forest in the northern slope of Daxinganling[J]. Chinese Journal of Ecology, 2004,23(5):35-41.
    [21]
    ZHANG Y H, TAN B X, SUN M L, et al.Impact of forest fire on understory vegetation and soil in typical forest types of Daxing’an Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2012,34(2):8-14.
    [21]
    徐庆祥. 抚育间伐对大兴安岭兴安落叶松天然林碳储量的影响[D]. 哈尔滨: 东北林业大学, 2013.
    [22]
    王超, 高红真, 臧永琪.白桦林木单株生物量的研究[J]. 林业科技, 2010,35(1):7-9.
    [23]
    宁波. 樟子松人工林结构动态及生物量的研究[D]. 哈尔滨:东北林业大学, 2007.
    [24]
    马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究Ⅱ: 丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995,15(3):268-277.
    [25]
    崔婧, 蔡体久, 杨业, 等. 漠河—大庆输油管道工程对沿线地区土壤养分的影响[J]. 水土保持学报, 2013,27(3):143-149.
    [26]
    谷会岩, 金靖博, 陈祥伟, 等. 采伐干扰对大兴安岭北坡兴安落叶松林土壤化学性质的影响[J]. 土壤通报, 2009,40(2): 272-275.
    [27]
    沈渭寿, 张慧, 邹长新, 等. 青藏铁路建设对沿线高寒生态系统的影响及恢复预测方法研究[J]. 科学通报, 2004,49(9):909-914.
    [28]
    喻理飞, 朱守谦, 叶镜中, 等. 退化喀斯特森林自然恢复过程中群落动态研究[J]. 林业科学, 2002,38(1):1-7.
    [29]
    王绪高, 李秀珍, 孔繁花, 等. 大兴安岭北坡火烧迹地自然与人工干预下的植被恢复模式初探[J]. 生态学杂志, 2003,22(5): 30-34.
    [30]
    NAGAIKE T, KAMITANI T, NAKASHIZUKA T. Effects of different forest management systems on plant species diversity in a Fagus crenata forested landscape of central Japan[J]. Canadian Journal of Forest Research, 2005,35(12): 2832-2840.
    [31]
    吴祥云, 卢慧, 王晓娇. 固沙林采伐迹地撂荒后自然恢复的植物多样性、生物量与土壤养分含量的变化[J]. 生态学杂志, 2007,26(7): 978-982.
    [32]
    SANTANA J, PORTO M, REINO L, et al. Long-term understory recovery after mechanical fuel reduction in Mediterranean cork oak forests[J]. Forest Ecology Management, 2011,261(3): 447-459.
    [33]
    项文化, 田大伦, 闫文德, 等. 杉木林采伐迹地撂荒后植被恢复早期的生物量与养分积累[J]. 生态学报, 2003,23(4):695-702.
    [34]
    关克志, 张大军. 大兴安岭森林火灾对植被影响分析[J]. 环境科学,1990,11(5):82-88.
    [35]
    王绪高, 李秀珍, 贺红士, 等. 大兴安岭北坡落叶松林火后植被演替过程研究[J]. 生态学杂志, 2004,23(5):35-41.
    [36]
    张玉红, 覃炳醒, 孙铭隆, 等. 林火对大兴安岭典型林型林下植被与土壤的影响[J]. 北京林业大学学报, 2012,34(2):8-14.
    [37]
    AUERBACH N A, WALKER M D, WALKER D A. Effects of roadside disturbance on substrate and vegetation properties in arctic tundra[J]. Ecological Applications, 1997,7(1):218-235.
  • Related Articles

    [1]Hou Jiayin, Feng Shuxiang, Dai Songhua, Yan Shufang. Identification of TP-M13-SSR molecular markers and genetic relationship analysis of seven new ornamental peach germplasms[J]. Journal of Beijing Forestry University, 2023, 45(8): 132-141. DOI: 10.12171/j.1000-1522.20220158
    [2]Xu Jiahong, Zeng Qing, Ye Fuyu, Hu Yangyang, Shi Huanyu, Zhang Xuan, Chen Jinhui. Genetic relationship of Populus qiongdaoensis in Populus based on full-length transcriptome sequences, nuclear genes and chloroplast genes[J]. Journal of Beijing Forestry University, 2021, 43(10): 28-37. DOI: 10.12171/j.1000-1522.20200286
    [3]Li Jiewen, Du Yunpeng, Jia Guixia, Zhang Dongmei. Genetic relationship analysis and distribution characteristics of some wild Lilium species native to China[J]. Journal of Beijing Forestry University, 2019, 41(10): 74-82. DOI: 10.13332/j.1000-1522.20180345
    [4]Zhang Mei, He Zhengquan, Ma Jiang, Sang Ziyang, Zhu Zhonglong, Zhang Dechun, Ma Lüyi, Chen Faju. Genetic relationship analysis and molecular identification of Magnolia wufengensis cultivars based on SSR and SRAP markers[J]. Journal of Beijing Forestry University, 2019, 41(9): 69-80. DOI: 10.13332/j.1000-1522.20190204
    [5]Pan Liqin, Li Jiyuan, Li Shaocui, Fan Zhengqi, Yin Hengfu, He Libo. Development of SSR markers based on transcriptome of Camellia japonica and analysis of genetic relationship[J]. Journal of Beijing Forestry University, 2019, 41(7): 111-120. DOI: 10.13332/j.1000-1522.20190101
    [6]Guo Bin. Construction of SSR fingerprint and research of genetic structure in relative Quercus species[J]. Journal of Beijing Forestry University, 2018, 40(5): 10-18. DOI: 10.13332/j.1000-1522.20170444
    [7]ZHANG Xiao-juan, SUN Zhen-yuan. ISSR analysis of Parthenocissus spp. and cultivars.[J]. Journal of Beijing Forestry University, 2011, 33(6): 177-180.
    [8]YANG Cheng-chao, WANG Sheng-dong, YANG Zhi-yan, SU Xiao-hua, HE Cheng-zhong, ZHANG Zhi-yi. Genetic relationship between parents and hybrid progenies of Populus alba L. ×Ulmus pumila L. using AFLP marker[J]. Journal of Beijing Forestry University, 2007, 29(2): 7-12.
    [9]HOU Xiao-gai, YIN Wei-lun, LI Jia-jue, WANG Hua-fang. Phylogenetic relationship of dwarf tree peony cultivars by AFLP analysis[J]. Journal of Beijing Forestry University, 2006, 28(5): 73-77.
    [10]WANG Xian, ZHANG Qi-xiang, YANG Qiu-sheng, CHAI Yong-sheng. Genetic relationship of Lagerstroemia indica by AFLP.[J]. Journal of Beijing Forestry University, 2005, 27(1): 59-63.
  • Cited by

    Periodical cited type(14)

    1. 赵科,孙淑霞,李靖,涂美艳,王玲利,何成勇,徐子鸿,江国良,宋海岩,陈栋. 52份枇杷种质资源遗传多样性分析与DNA指纹图谱构建. 西南农业学报. 2024(02): 242-249 .
    2. 张立杰,谢丽雪,张小艳,李韬,黄立新. 64个蓝莓品种的ISSR分析. 东南园艺. 2023(01): 11-17 .
    3. 刘小英,蔡益航,吴碧君,张游南,刘国强. 二十个枇杷品种(系)ISSR标记的遗传多样性分析. 热带农业科学. 2022(11): 58-63 .
    4. 刘小英,黄飞龙,刘国强,张游南. 枇杷ISSR分子标记的研究进展. 中国农学通报. 2021(21): 106-110 .
    5. 邹士成,赵崇斌,王曼,白昀鹭,林顺权,何业华,吴锦程,杨向晖. 利用PSY基因标记探讨枇杷果肉颜色的遗传倾向. 果树学报. 2020(02): 175-182 .
    6. 李娟,董利军,林建勇,刘雄盛,梁瑞龙. 楠木树种种质资源的ISSR分析. 分子植物育种. 2018(19): 6428-6435 .
    7. 罗仙英,桂敬飞,严治,明毅,田雨风,范付华. 贵州桂花种质资源遗传多样性的ISSR分析. 种子. 2017(06): 62-66 .
    8. 杨勇胜,江旭升,文晓鹏,李庆宏,魏椿,陈树红,田红. 中熟枇杷新品种‘贵蜜’的选育. 果树学报. 2016(06): 773-776 .
    9. 杨勇胜,李庆宏,江旭升,邓勇,魏椿,全修冰,唐洪毅,陈树红. 晚熟枇杷新品种‘黔星’的选育. 果树学报. 2016(03): 378-381 .
    10. 郑姗,张小艳,张立杰,谢丽雪,李韬. 40个龙眼品种(品系)DNA指纹图谱构建及遗传关系分析. 中国农学通报. 2016(01): 107-112 .
    11. 武玉珍,冯睿芝,张峰. 基于ISSR分子标记的褐马鸡亲缘关系分析. 生态学报. 2015(04): 1059-1067 .
    12. 郑姗,张立杰,谢丽雪,张小艳,李韬. 蓝莓品种ISSR指纹图谱构建的初步研究. 福建农业学报. 2014(12): 1198-1201 .
    13. 范付华,夏辉,王振启,陈洪国. 咸宁地区部分桂花品种的ISSR分析. 湖北大学学报(自然科学版). 2014(03): 272-276 .
    14. 龙治坚,王莹,向素琼,梁国鲁. 枇杷属植物DNA分子标记利用的研究进展. 果树学报. 2013(03): 480-488 .

    Other cited types(4)

Catalog

    Article views (1759) PDF downloads (27) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return