• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
SUN Hu, LI Feng-ri, SUN Mei-ou, JIA Wei-wei. Carbon storage of poplar plantations in Songnen Plain, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(5): 33-41. DOI: 10.13332/j.1000-1522.20150336
Citation: SUN Hu, LI Feng-ri, SUN Mei-ou, JIA Wei-wei. Carbon storage of poplar plantations in Songnen Plain, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(5): 33-41. DOI: 10.13332/j.1000-1522.20150336

Carbon storage of poplar plantations in Songnen Plain, northeastern China

More Information
  • Received Date: September 29, 2015
  • Revised Date: September 29, 2015
  • Published Date: May 30, 2016
  • Using data from 6 sample plots and 36 sample trees in the Songnen Plain, northeastern China, we established a compatible biomass model of poplar, measured carbon content rate of each component of the plantations, estimated carbon content in each organ of poplar, and analyzed the characteristics of carbon content density of the ecological system of poplar. The results were as follows. Diameter at breast height (DBH) and forest age were the main factors that affect carbon content in various organs of poplar. Carbon content rate of each organ ranged between 0.4427 and 0.4848. Difference in carbon content rate of each layer of understory species was significant, with that in deadwood layer between 0.4568-0.4711, 0.3683-0.4454 in litter layer, 0.4184-0.4600 in half-decomposition layer, and 0.3506-0.3729 in herb layer. Biomass and carbon storage rate of 14-28-year-old poplars grew with forest age; the proportion of biomass and carbon storage of stem kept around 0.60, while those of canopy at 0.17. Carbon storages of 14-, 21- and 28-year-old poplar ecology systems were 230.3449,280.9064 and 356.4973t/ha, respectively, and carbon storage of each component in this ecology system was in the order as soil layer > vegetation layer > litter layer. Since the understory vegetation layer in this region consisted mainly of herbs, the proportion of carbon storage of tree layer was more than 99%. The soil layer was very thick, so the carbon storages of the 14-, 21- and 28-year-old poplar ecological system depended mainly on soil and grew with forest age, which were 216.5626, 262.3598 and 335.3581t/ha, and the proportion was all over 93%.
  • [1]
    LIU G H, FU B J,FANG J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance [J]. Acta Ecological Sinica, 2000, 20(5):733-401.
    [1]
    BROWN S, LUGO A E.Biomass of tropical forests:a new estimate based on forest volumes[J].Science New Series, 1984, 223(4642): 1290-1293.
    [2]
    ZHOU Y R, ZHAO S D. Carbon storage and budget of major Chinese forest types [J]. Acta Phytoecologica Sinica , 2000,24 (5): 518-522.
    [2]
    SAXE H, CANNELL M G R. Tree and forest functioning in response to global warming [J]. New Physiologist, 2001,149:369-400.
    [3]
    WANG X K, FENG Z W, OUYANG Z Y. Vegetation carbon storage and density of forest ecosystems in China [J]. Chinese Journal of Applied Ecology, 2001, 12(1): 13-16.
    [3]
    FANG J Y,CHEN A P,PENG C H, et al.Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,2001,292:2320-2322.
    [4]
    FANG J Y,CHEN A P. Dynamic forest biomass carbon pools in China and their significance[J]. Acta Botanica Sinica, 2001,43(9):967- 973.
    [4]
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    [5]
    JIA W W,LI F R,DONG L H, et al. Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models [J]. Journal o f Beijing Forestry University, 2012, 34 (1): 6-13.
    [5]
    周玉荣,赵士洞.我国主要森林生态系统碳储量和碳平衡[J ].植物生态学报,2000,24(5):518-522.
    [6]
    王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16.
    [6]
    LIU T Y, ZHANG Y D, PENG H M, et al. Carbon storage in vegetation in Fraxinus mandshurica young plantations of different densities[J]. Journal of Northeast Forestry University, 2012,40(6):1-4.
    [7]
    方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967- 973.
    [7]
    JIANG J M, JIA W W, LIU Q. Carbon storage maturity of larch plantation in Heilongjiang Province[J].Bulletin of Botanical Research, 2015,35(4):597-603.
    [8]
    贾炜玮,李凤日,董利虎,等.基于相容性生物量模型的樟子松林碳密度与碳储量研究[J]. 北京林业大学学报,2012,34(1): 6-13.
    [8]
    FANG X R. Carbon exchange and its response to environmental factors in poplar plantation ecosystem[D]. Beijing: Beijing Forestry University, 2011:9-12.
    [9]
    刘婷岩,张彦东,彭红梅,等.林分密度对水曲柳人工幼龄林植被碳储量的影响[J].东北林业大学学报,2012, 40(6):1-4.
    [9]
    DONG L H, LI F R, JIA W W,et al.Compatible biomass models for main tree species with measurement error in Heilongjiang Province of northeast China[J].Chinese Journal of Applied Ecology, 2011, 22(1): 2653-2661.
    [10]
    姜佳梅,贾炜玮,刘强.黑龙江省市县林区落叶松人工林碳储量成熟的研究[J].植物研究,2015,35(4):597-603.
    [10]
    TANG S Z, ZHANG H R,XU H. Study on establish and estimate method of compatible biomass model[J].Scientia Silvae Sinicae, 2000, 36(Spec. 1):19-26.
    [11]
    方显瑞.杨树人工林生态系统碳交换及其环境响应[D].北京:北京林业大学,2011:9-12.
    [11]
    JIN F,YANG H,CAI Z C. Calculation of density and reserve of organic carbon in soils[J]. Acta Pedologica Sinica, 2001,38(4):522-527.
    [12]
    WANG Y,WANG M B,ZHU S Z, et al. Carbon densities of major tree species in forests in southern Lvliang Mountains of Shanxi Province,China[J]. Chinese Journal of Ecology, 2015,34(2):333-340.
    [12]
    LI F R, LIU F X, JIA W W. The development of compatible tree biomass models for main species in North-Eastern China [J]. Advanced Materials Research,2011,183-185: 250-254.
    [13]
    XIAO X,WANG X F,FAN W Y, et al. Forest ecosystem carbon density in Xiaoxing'an mountain of Heilongjiang Province based on the remote sensing[J]. Journal of Northeast Forestry University, 2015,43(4):127-130.
    [13]
    董利虎,李凤日,贾炜玮,等.含度量误差的黑龙江省主要树种生物量相容性模型[J].应用生态学报,2011,22(10):2653-2661.
    [14]
    唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2000,36(专刊1):19-26.
    [14]
    HU H Q,LUO B Z,WEI S J, et al. Estimating biological carbon storage of five typical forest types in the Daxing'aning mountain Heilongjiang, China [J]. Acta Ecological Sinica, 2015, 35(17):1-21.
    [15]
    金峰,杨浩,蔡祖聪.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38(4):522-527.
    [15]
    MA Q Y, CHEN X L, WANG J, et al. Carbon content rate in constructive species of main forest types in northern China [J].Journal of Beijing Forestry University, 2002, 24(5/6): 96-101.
    [16]
    王琰,王孟本,朱世忠,等.山西吕梁山南端森林乔木层碳密度[J].生态学杂志,2015,34(2):333-340.
    [16]
    SUN H, LI F R,JIA W W, et al. The study on carbon content of planted Pinus koraiensis middle-aged forest [J].Forest Engineering, 2013,29(5):19-23.
    [17]
    肖湘,王西峰,范文义,等. 黑龙江省区小兴安岭森林生态系统碳密度遥感估[J].东北林业大学学报,2015,43(4):127-130.
    [17]
    MING A G, ZHEN L, MA J, et al. Biomass and carbon stock and allocation characteristic in Mesua ferrea plantation[J]. Journal of Beijing Forestry University, 2015, 37(2): 32-40.
    [18]
    胡海清,罗碧珍,魏书精,等.大兴安岭5种典型林型森林生物量碳储量研究[J].生态学报,2015,35(17):1-21.
    [18]
    ZHANG T,WAN F X,TAN Z X. Carbon content and storage of mexican cypress plantation forest in the Xuyi County[J]. Research of Soil and Water Conservation, 2015,22(4):228-231.
    [19]
    XUAN Z L,ZHANG Q C,GE L L, et al. Biomass structure and distribution of Korean Larch Plantations[J]. Forestry Resources Management, 2013(1):53-57.
    [19]
    马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5/6):96-101.
    [20]
    孙虎,李凤日,贾炜玮,等.人工红松中龄林含碳率研究[J].森林工程,2013,29(5):19-23.
    [20]
    MA W, SUN Y J,GUO X Y, et al. Carbon storage of Larix olgensis plantation at different stand ages[J]. Acta Ecologica Sinica, 2010,30(17):4659-4667.
    [21]
    明安刚,郑路,麻静,等.铁力木人工林生物量与碳储量及其分配特征[J].北京林业大学学报,2015,37(2):32-40.
    [22]
    张涛,万福绪,谈正鑫. 盱眙县墨西哥柏人工林含碳率与碳储量研究[J].水土保持研究,2015,22(4):228-231.
    [23]
    PREGITZER K S,EUSKIRCHEN E S.Carbon cycling and storage in world forests: biome patterns related to forest age [J].Global Change Biology,2004,10(12): 2052-2077.
    [24]
    轩志龙,张启昌,葛丽丽,等.长白落叶松人工林生物量的结构与分布[J].林业资源管理,2013(1):53-57.
    [25]
    马炜,孙玉军,郭孝玉,等.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17):4659-4667.
  • Related Articles

    [1]Zhan Ting, Ren Jinyuan, Peng Yao, Cao Jinzhen. Influence of bamboo fiber particle size and addition ratio on the properties of bamboo fiber/polypropylene/CaCO3 composite[J]. Journal of Beijing Forestry University, 2024, 46(1): 131-140. DOI: 10.12171/j.1000-1522.20230262
    [2]Hao Qian, Wang Yida, Ge Ying, Zhou Jing, Liu Zhenbo. Acoustic vibration performance of birch veneer-metal copper mesh composites[J]. Journal of Beijing Forestry University, 2023, 45(1): 148-158. DOI: 10.12171/j.1000-1522.20220378
    [3]Lin Bin, Zhai Xueyong, Li Rui, Sun Lipeng, Zhang Yuanting, Yin Yuxue, Liu Zhenbo. Optimization of preparation process of birch veneer/glass fiber composite[J]. Journal of Beijing Forestry University, 2019, 41(4): 127-135. DOI: 10.13332/j.1000-1522.20190049
    [4]WANG Dan-dan, CAO Yang, WANG Cui-cui, WEI Wen-bang, ZHANG Shuang-bao. Effect of silane coupling agent on mechanical properties of eucalyptus veneer/polyvinyl chloride (PVC) composites[J]. Journal of Beijing Forestry University, 2016, 38(2): 120-123. DOI: 10.13332/j.1000-1522.20150258
    [5]ZHAO Jun-shi, XU Zheng-dong, WANG Jin-lin, ZHANG Shuang-bao. Influence of fiber-glass on mechanical properties of composite laminates.[J]. Journal of Beijing Forestry University, 2014, 36(2): 129-132.
    [6]SUN Feng, ZHOU Yong-dong, LI Xiao-ling, LvJian-xiong, HAN Chen-jing, ZHAN Man-jun. Effects of species, diameter and processing equipment on veneer recovery of Eucalyptus spp.[J]. Journal of Beijing Forestry University, 2013, 35(4): 128-133.
    [7]ZHANG Ying, YU Zhi-ming, WANG Nan.. Quantitative evaluation of veneer gelatinize process and its effect[J]. Journal of Beijing Forestry University, 2010, 32(4): 251-255.
    [8]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [9]ZHANG De-rong, YU Zhi-ming, LI Jian-zhang, JIN Xiao-juan. Technical parameters of Laminated Veneer Lumber manufactured with dyeing and fire-retardant treated veneers[J]. Journal of Beijing Forestry University, 2005, 27(3): 83-86.
    [10]WANG Zheng, ZHAO Xing-zhi, GUO Wen-jing. Process factors and performances of recycled plastic-wood fiber composites.[J]. Journal of Beijing Forestry University, 2005, 27(1): 1-5.
  • Cited by

    Periodical cited type(15)

    1. 李潇潇. 古建筑木构件损伤及耐久性研究综述. 低温建筑技术. 2025(01): 16-19 .
    2. 麻胜兰,陈志宁,邵顺安,姜绍飞,许跃飞. 基于声发射多参数耦合的木材裂缝检测方法. 建筑结构. 2024(02): 136-144 .
    3. 赵东,马荣宇,于立川,赵健,刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别. 北京林业大学学报. 2024(03): 123-131 . 本站查看
    4. 刘佳,于孟言,高珊,陈昱龙,冯蔓萱,杜鑫宇. 基于AE-BP模型的杨木胶合板应力损伤识别. 中南林业科技大学学报. 2024(04): 169-179 .
    5. 张萌,王灵芝,李守宇,张庆文,杨宇彤. 不同变量圆竹建筑填充组合节点轴压损伤声发射特性研究. 林产工业. 2024(07): 17-22 .
    6. 刘陈陈,黄奥,李昇昊,陈昕煜,顾华志. 基于机器视/听觉的耐火材料蚀损行为表征评价研究进展. 钢铁研究学报. 2024(10): 1247-1266 .
    7. 何佳明,李猛,蔡高洁,胡彬,佘艳华. 不同含水率雪松木的裂纹演化规律试验研究. 科学技术与工程. 2023(05): 1888-1894 .
    8. 李猛,佘艳华,何学杰,王俊辉,何佳明. 基于PZT和DIC对木构件榫卯松动监测试验研究. 林产工业. 2023(06): 20-26 .
    9. 李猛,佘艳华,贺才豪,何佳明,陈迪. 不同温度下的柏木构件顺纹压缩损伤规律研究. 西南林业大学学报(自然科学). 2023(05): 153-163 .
    10. 赖菲,王明华,肖洒,丁锐,罗蕊寒,邓婷婷,李明. 应用声发射技术和图像分形理论对樟子松木材裂纹演化特征的检测. 东北林业大学学报. 2022(07): 89-93 .
    11. 邢雪峰,李善明,金菊婉,林兰英,周永东,傅峰. 高能微波处理辐射松木材的抗弯力学性能与损伤演化特征. 北京林业大学学报. 2022(08): 107-116 . 本站查看
    12. 邢雪峰,李善明,周永东,林兰英,傅峰. 声发射技术在木质材料损伤监测中的应用研究进展. 世界林业研究. 2022(06): 63-68 .
    13. 杨丽华. 基于数字林业技术加强林业管理的研究. 造纸装备及材料. 2022(11): 96-98 .
    14. 陈泽华,杨小军,张璐,董浩然,赵琦. 防腐处理胶合木的层间界面断裂韧性研究. 森林与环境学报. 2021(02): 219-224 .
    15. 杜永刚,周伟,刘朔,刘亚萍,刘佳,马连华. 含夹渣缺陷Q245R钢的声发射特性和DIC研究. 电子测量技术. 2021(18): 1-6 .

    Other cited types(9)

Catalog

    Article views (2078) PDF downloads (40) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return