• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
GU Hui-yan, JIN Yu-song, ZHANG Yun-hui, CHEN Xiang-wei. Effects of forest fire on soil nutrients of Ass. Pinus pumila-Larix gmelinii forest in Great Xing’an Mountains.[J]. Journal of Beijing Forestry University, 2016, 38(7): 48-54. DOI: 10.13332/j.1000-1522.20150510
Citation: GU Hui-yan, JIN Yu-song, ZHANG Yun-hui, CHEN Xiang-wei. Effects of forest fire on soil nutrients of Ass. Pinus pumila-Larix gmelinii forest in Great Xing’an Mountains.[J]. Journal of Beijing Forestry University, 2016, 38(7): 48-54. DOI: 10.13332/j.1000-1522.20150510

Effects of forest fire on soil nutrients of Ass. Pinus pumila-Larix gmelinii forest in Great Xing’an Mountains.

More Information
  • Received Date: December 27, 2015
  • Published Date: July 29, 2016
  • Great Xingan Mountains are a fire-prone area in China. Forest fire has a direct or indirect influence on chemical properties of forest soil. We explored the impacts of different burning time and fire intensity conditions on pH value and soil nutrients in the burned area of Ass. Pinus pumila-Larix gmelinii forest in Huzhong Forestry Bureau of Great Xing’an Mountains using two-factor variance analysis method. The results showed that under the same burning time condition, pH value of soil increased with fire intensity increasing. With the time increasing after fire, pH value decreased at the same burning intensity, but pH value in the burned area was higher than that in the unburned area. Under the same fire intensity condition, soil nutrient contents of Ass. Pinus pumila-Larix gmelinii forest in the burned area varied at different burning time (1996, 2010, unburned), but without significant difference(P0.05). Soil organic matters and total nitrogen level of Ass. Pinus pumila-Larix gmelinii forest were significantly different(P0.05)under the same burning time condition with varying fire intensities. There were significant differences(P0.05)among soil organic matter content in mild, moderate and severe fire conditions, and that of unburned forest also had significant differences(P0.05)between moderate and severe fire conditions, respectively; for soil nitrogen content, significant differences (P0.05)were found between conditions of unburned and mild fire, and between conditions of moderate and severe fire, separately; however, pH value, total phosphorus, total potassium and C/N value had no marked change(P0.05)under different burning time and fire intensity conditions. Ass. Pinus pumila-Larix gmelinii forest suffering fire in 2010 and 1996 did not recover to the previous growth condition without fire disturbance in five and even nineteen years. Our study provides a scientific reference for the quick and efficient rehabilitation of Ass. Pinus pumila-Larix gmelinii forest in Great Xingan Mountains after fire.
  • [1]
    宋亚军. 近期林火科学研究文献计量分析[D].北京:北京林业大学,2013.
    [1]
    SONG Y J. Bibliometrics analysis of recent forest fire researches[D]. Beijing: Beijing Forestry University, 2013.
    [2]
    周艳春. 森林火灾对流域蒸散发和径流的影响研究[D].大连:大连理工大学,2013.
    [2]
    ZHOU Y C. Research on bushfire impact on catchment evapotranspiration and streamflow[D]. Dalian: Dalian University of Technology, 2013.
    [3]
    LUO J C. Influence of forest fire disaster on forest ecosystem in Great Xing’anling[J]. Journal of Beijing Forestry University, 2002, 24(5-6):105-111.
    [3]
    罗菊春. 大兴安岭森林火灾对森林生态系统的影响[J]. 北京林业大学学报,2002,24(5-6):105-111.
    [4]
    TIAN X R, SHU L F, WANG M Y, et al. Analysis of characteristics of forest fires in Great Xing’anling[J]. Forest Fire Prevention, 2008(2): 20-21.
    [4]
    DIKICI H, YILMAZ C H. Peat fire effects on some properties of an artificially drained peatland[J]. Journal of Environmental Quality, 2006, 35( 3) : 866-870.
    [5]
    田晓瑞,舒立福,王明玉,等. 大兴安岭林火特征分析[J]. 森林防火,2008(2):20-21.
    [5]
    LIU S G, FU Y C, JIANG Y Q. Surface fire spreading simulation with realistic impression[J]. Journal of Natural Disasters, 2012, 21(2): 180-186.
    [6]
    ZHU M, FENG Z K,HU L. Improvement of forest surface fire spread models[J]. Journal of Beijing Forestry University, 2005, 27(Suppl. 2): 138-141.
    [6]
    刘世光,傅应坻,蒋浴芹. 地表火蔓延的真实感仿真[J]. 自然灾害学报,2012,21(2):180-186.
    [7]
    朱敏,冯仲科,胡林. 对两个森林地表火蔓延改进模型的研究[J].北京林业大学学报,2005,27(增刊2):138-141.
    [7]
    DAI W. Study on changes in some chemical soil properties after burning[J]. Journal of Beijing Forestry University,1994,16(1):102-105.
    [8]
    MAKOTO K, HIROBE M, DELUCA T H, et al. Effects of fire-derived charcoal on soil properties and seedling regeneration in a recently burned Larix gmelinii , Pinus sylvestris forest[J]. Journal of Soils and Sediments, 2011, 11(8): 1317-1322.
    [8]
    SHA L Q, DENG J W, XIE K J, et al. Study on the change of soil nutrient before and after burning secondary forest in Xishuangbanna[J].Chinese Journal of Ecology, 1998, 22(6): 34-38.
    [9]
    BOBY L A, SCHUUR E A G, MACK M C, et al. Quantifying fire severity, carbon and nitrogen emissions in Alaska’s boreal forest[J]. Ecological Applications, 2010, 20(6): 1633-1647.
    [9]
    SUN M X. The impacts on soil properties and revegetation from forest fire in Tahe forest region[D]. Beijing: Beijing Forestry University, 2011.
    [10]
    ANDRIESSE J P, KOOPMANS T T. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climate conditions in tropical Asia: the influence of simulated burning on form and availability of plant nutrients [J]. Agriculture Ecosystems Environment, 1984, 12(1): 1-16.
    [10]
    GUO A X, GUO Y F, CUI X Y. Effects of different intensities of fire disturbances on soil nutrients in a Pinus massoniana forest in the Great Xing’an Mountains[J]. Journal of Northeast Forestry University, 2011, 39(5) : 69-71.
    [11]
    BAUHUS J, KHANNA P K, RAISON R J. The effect of fire on carbon and nitrogen mineralization and nitrification in an Australian forest soil[J]. Australian Journal of Soil Science, 1993, 31(5): 621-639.
    [11]
    GU H Y, JIN J B, CHEN X W, et al. The long-term impacts on chemical properties of Larix gmelinii forest on the northern slope of Great Xingan Mountains from a forest fire of varying fire intensity[J]. Journal of Natural Resources, 2010, 25(7): 1114-1121.
    [12]
    ZHOU Y L. Vegetation of Great Xing’an Mountains in China[M]. Beijing: Science Press, 1991.
    [12]
    戴伟. 人工油松林火烧前后土壤化学性质变化的研究[J]. 北京林业大学学报,1994,16(1):102-105.
    [13]
    XU H C. Great Xing’an Mountains forests in China[M]. Beijing: Science Press, 1998.
    [13]
    沙丽清,邓继武,谢克金,等.西双版纳次生林火烧前后土壤养分变化的研究[J]. 植物生态学报,1998,22(6):34-38.
    [14]
    孙明学. 塔河林区林火对土壤性质与植被恢复的影响[D].北京:北京林业大学,2011.
    [14]
    XU C G, HU Y M, CHANG Y, et al. Geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation [J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2005, 22(4): 436-446.
    [15]
    郭爱雪,郭亚芬,崔晓阳. 大兴安岭马尾松林下土壤在不同火烧强度下的养分变化[J]. 东北林业大学学报,2011,39(5):69-71.
    [15]
    CHANG Y, LENG W F, HE H S, et al. Using weights of evidence to estimate the probability of forest fire occurrence: a case study in Huzhong area of Daxing’an Mountains[J]. Scientia Silvae Sinicae, 2010,46(2): 103-109.
    [16]
    Panels of production recovery and rebuild hometown of State Council for Great Xing’an Mountain fire disaster area. Integrated investigation report of forest resources restoration and ecological environment of Great Xing’an Mountain fire disaster area[C]. Beijing: China Forestry Publishing House, 1987.
    [16]
    谷会岩,金靖博,陈祥伟,等.不同火烧强度林火对大兴安岭北坡兴安落叶松林土壤化学性质的长期影响[J].自然资源学报,2010,25(7) :1114-1121.
    [17]
    GUAN J Y, CHEN X Q. Experiment of forest soil[M]. Harbin: Northeast Forestry University Press, 1992.
    [17]
    周以良. 中国大兴安岭植被[M]. 北京:科学出版社,1991.
    [18]
    Nanjing Agriculture University. Analysis of soil and agricultural chemistry[M]. Beijing: Agricultural Science Press, 1988.
    [18]
    徐化成. 中国大兴安岭森林. 北京:科学出版社,1998.
    [19]
    SUN L, ZHAO J, HU H Q. Effect of moderate fire disturbance on soil physical and chemical properties of Betula platyphylla-Larix gmelinii mixed forest[J]. Scientia Silvae Sinicae, 2011,47( 2) : 103-110.
    [19]
    徐崇刚,胡远满,常禹,等. 空间直观森林景观模型空间不确定性的地统计学模拟[J]. 中国科学院研究生院学报, 2005,22(4):436-446.
    [20]
    常禹,冷文芳,贺红士,等. 应用证据权重法估测林火发生的可能性:以呼中林区为例[J]. 林业科学,2010,46(2):103-109.
    [20]
    DU J L. Study on changes of forest fire disasters on the base of time sequence analysis[D].Harbin: Northeast Forestry University, 2014.
    [21]
    TANG J L, OU G J. Influence of fire on soil property under the canopy of Yunnan Pine[J]. Journal of Beijing Forestry University, 1995, 17(2): 44-49.
    [21]
    国务院大兴安岭灾区恢复生产重建家园领导小组专家组.大兴安岭特大森林火灾恢复森林资源和生态环境考察报告汇编[C].北京:中国林业出版社,1987.
    [22]
    LIANG Y J, MA W G, ZHANG S, et al. Effect of burning on the chemical properties of soil in protective ground[J]. Journal of Agricultural Science Yanbian University, 2006, 28(3):177-181.
    [22]
    关继义,陈喜全. 森林土壤实验教程[M]. 哈尔滨:东北林业大学出版社,1992.
    [23]
    YU C. Study on present nitrate pollution status and post-harvest controlling measures of typical vegetables in Wuhan City [D]. Wuhan: Wuhan University of Technology, 2010.
    [23]
    南京农业大学. 土壤农化分析[M]. 北京:农业出版社,1988.
    [24]
    ZENG W. The SBR method of aerobic granular sludge nitrogen N2O produced in the process of research[D]. Harbin: Northeast Forestry University, 2011.
    [24]
    孙龙,赵俊,胡海清. 中度火干扰对白桦落叶松混交林土壤理化性质的影响[J].林业科学,2011,47(2):103-110.
    [25]
    SONG J. Shortcut nitrification by ammonium-oxidizing bacteria enriched granular sludge and free nitrous acid inhibition [D]. Hefei: Hefei University of Technology, 2010.
    [25]
    杜嘉林. 基于林火时间序列的灾变研究[D]. 哈尔滨:东北林业大学,2014.
    [26]
    FERNANDEZ I, CABANEIRO A, CARBALLAS T. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating[J]. Soil Biology Biochemistry, 1997, 29(1):1-11.
    [27]
    GIOVANNINI G.The effect of fire on soil quality[C]∥SALAM M, RUBIO J L.In soil erosion as a consequence of forest fires.Logrono: Geoforma Ediciones, 1994: 15-27.
    [28]
    唐季林,欧国菁. 林火对云南松林土壤性质的影响[J]. 北京林业大学学报,1995,17(2):44-49.
    [29]
    梁运江,马文革,张爽,等. 灼烧对保护地土壤化学性质的影响[J]. 延边大学农学学报,2006,28(3):177-181.
    [30]
    FISCHER R F, BINKLEY D. Ecology and management of forest soils[M]. 3th ed. New York: John Wiley, 2000.
    [31]
    余萃. 武汉市典型蔬菜硝酸盐污染状况及采后阻控措施研究[D].武汉:武汉理工大学,2010.
    [32]
    曾巍. SBR法好氧颗粒污泥脱氮过程中N2O的产生研究[D].哈尔滨:东北林业大学,2011.
    [33]
    宋静. 氨氧化细菌富集颗粒污泥短程硝化及自由亚硝酸抑制研究[D].合肥:合肥工业大学,2010.
  • Related Articles

    [1]Mei Xuesong, Dong Lingbo, Chen Guanmou. Driving factors of carbon sink in natural Larix gmelinii forests based on structural equation models[J]. Journal of Beijing Forestry University, 2024, 46(9): 1-10. DOI: 10.12171/j.1000-1522.20230284
    [2]Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
    [3]Xu Chao, Long Ting, Wu Xinlei, Chen Jie, Liang Yanjun, Li Jingwen. Reintroducing effects and influencing factors of Taxus cuspidata population[J]. Journal of Beijing Forestry University, 2020, 42(8): 34-42. DOI: 10.12171/j.1000-1522.20190423
    [4]Gao Yan, Zhang Yuqing, Qin Shugao, Zhang Jutao, Liu Zhen. Landscape pattern change and its influencing factors of sand-binding vegetation[J]. Journal of Beijing Forestry University, 2020, 42(4): 102-112. DOI: 10.12171/j.1000-1522.20190061
    [5]He Xiao, Cao Lei, Xu Shenglin, Li Haikui. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 50-58. DOI: 10.13332/j.1000-1522.20190030
    [6]ZHOU Wen-jun, SHA Li-qing, ZHANG Yi-ping, SONG Qing-hai, LIU Yun-tong, DENG Yun, DENG Xiao-bao. Characteristics and influencing factors of soil dissolved organic carbon and nitrogen in a tropical seasonal rainforest in Xishuangbanna,Southwest China.[J]. Journal of Beijing Forestry University, 2016, 38(9): 34-41. DOI: 10.13332/j.1000-1522.20150238
    [7]LI Ning, CHEN Li-hua, YANG Yuan-jun.. Factors influencing root tensile properties of Pinus tabuliformis and Larix principis-rupprechtii.[J]. Journal of Beijing Forestry University, 2015, 37(12): 77-84. DOI: 10.13332/j.1000-1522.20150131
    [8]CHEN Chong, LI Ji-yue, , WANG Yu- tao. Variation of stem sap flow of Salix matsudana and its impact factors.[J]. Journal of Beijing Forestry University, 2008, 30(4): 82-88.
    [9]GUO Hong-wu, WANG Jin-lin, LI Chun-sheng, YAN Hao-Peng. Light-induced discoloration and influencing factors of dyed veneer after painted.[J]. Journal of Beijing Forestry University, 2008, 30(4): 22-27.
    [10]JIAO Wen-jun, ZHU Qing-ke, ZHANG Yu-qing, WU Xiu-qin, WANG Na. Distribution of biotic crusts and its influencing factors in the grain-for-green land of the loess region, northern Shaanxi Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 102-107. DOI: 10.13332/j.1000-1522.2007.01.018
  • Cited by

    Periodical cited type(34)

    1. 孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
    2. 裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
    3. 贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
    4. 张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
    5. 罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
    6. 张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
    7. 廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
    8. 贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
    9. 李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
    10. 王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
    11. 孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
    12. 岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
    13. 徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
    14. 杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
    15. 刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
    16. 王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
    17. 谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
    18. 吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
    19. 陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
    20. 王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
    21. 童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
    22. 苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
    23. 刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
    24. 孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
    25. 张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
    26. 林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
    27. 林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
    28. 姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
    29. 林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
    30. 阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
    31. 林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
    32. 赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
    33. 李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
    34. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(26)

Catalog

    Article views (2050) PDF downloads (40) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return