• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Ruosha, Wang Dongmei. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88-95. DOI: 10.12171/j.1000-1522.20200149
Citation: Liu Ruosha, Wang Dongmei. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88-95. DOI: 10.12171/j.1000-1522.20200149

Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau

More Information
  • Received Date: May 17, 2020
  • Revised Date: December 03, 2020
  • Available Online: December 07, 2020
  • Published Date: February 04, 2021
  •   Objective  By analyzing the changes of soil nutrients and ecostoichiometry in different plantations and varied soil layers in the alpine region of the Loess Plateau, this paper aims to clarify the soil nutrients and stoichiometric characteristics under different plantations, and to reveal the laws of soil nutrients and stoichiometric changes with soil depth.
      Method  In this paper, plantations (including Picea crassifolia, Larix principis-rupprechtii, Populus cathayana, Betula platyphylla) in the alpine region of the Loess Plateau in Qinghai Province, northwestern China were taken as the research objects, and the grassland of natural conversion and cropland were taken as control. C, N and P contents and stoichiometry ratios of six vegetation types in 0−20 cm, 20−40 cm and 40−60 cm soil layers were determined.
      Result  (1) The soil C and N contents of different plantations in the alpine region of the Loess Plateau were significantly different (P < 0.05), and the difference of soil P content was partially significant. The C and N contents in each soil layer of plantations were significantly higher than those of grassland and cropland, and the organic carbon and total nitrogen contents in 0−20 cm topsoil of Populus cathayana were the highest, which were 25.82 and 2.17 g/kg, respectively. (2) The soil ecostoichiometry of different plantations in the alpine region of the Loess Plateau was significantly different (P < 0.05). The C∶N of plantations in 0−60 cm soil layer was significantly lower than cropland, while the C∶P and N∶P were higher than those of grassland and cropland (P < 0.05). The ecostoichiometry of Populus cathayana in 0−20 cm topsoil was higher than other plantation types, with C∶N, C∶P and N∶P being 11.99, 43.27 and 3.64, respectively. (3) Correlation analysis showed that the organic carbon in the study area had the closest correlation with total nitrogen (P < 0.01), the total nitrogen had the closest correlation with soil C∶N and N∶P (P < 0.01), and the organic carbon had the closest correlation with soil C∶P (P < 0.01). This indicated that the responses of soil C and N in the study area to different plantations were consistent. The soil C∶N and N∶P were mainly affected by total nitrogen, and the C∶P was mainly affected by organic carbon. (4) In the 0−60 cm soil layer, the soil C, N and P contents of different vegetation types decreased with the increase of soil depth in the alpine region of the Loess Plateau. The soil ecostoichiometry of the vegetation in the study area had no significant changing trend except for Populus cathayana, which decreased with the increase of soil depth. This indicated that plantations had the best improvement effect on the surface soil nutrients.
      Conclusion  Soil nutrients and ecostoichiometry are significantly different in varied plantations, and the nutrient content and stoichiometry of Populus cathayana in topsoil are the highest. Soil nutrients decrease with the increase of soil depth, while soil ecostoichiometry does not change significantly with soil depth.
  • [1]
    冼伟光, 周丽, 唐洪辉, 等. 不同林龄针阔混交林土壤生态化学计量特征[J]. 广东林业科技, 2015, 31(1):1−6.

    Xian W G, Zhou L, Tang H H, et al. Soil ecological stoichiometry of conifer-broadleaved plantations of different age in southern subtropical region[J]. Guangdong Forestry Science and Technology, 2015, 31(1): 1−6.
    [2]
    张光德, 赵传燕, 戎战磊, 等. 祁连山中部不同植被类型土壤生态化学计量特征研究[J]. 兰州大学学报(自然科学版), 2019, 55(4):533−540.

    Zhang G D, Zhao C Y, Rong Z L, et al. Ecological stoichiometry of soils with different vegetation types in the middle part of the Qilian Mountains[J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(4): 533−540.
    [3]
    王璐, 喻阳华, 邢容容, 等. 喀斯特高原山地区主要人工林土壤生态化学计量特征[J]. 南方农业学报, 2017, 48(8):1388−1394. doi: 10.3969/j.issn.2095-1191.2017.08.09.

    Wang L, Yu Y H, Xing R R, et al. Ecological stoichiometry characteristics of soils from main plantations in karst plateau mountainous area[J]. Journal of Southern Agriculture, 2017, 48(8): 1388−1394. doi: 10.3969/j.issn.2095-1191.2017.08.09.
    [4]
    Zhao F, Kang D, Han X, et al. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity[J]. Ecological Engineering, 2015, 74: 415−422. doi: 10.1016/j.ecoleng.2014.11.010.
    [5]
    庞圣江, 张培, 贾宏炎, 等. 桂西北不同森林类型土壤生态化学计量特征[J]. 中国农学通报, 2015, 31(1):17−23. doi: 10.11924/j.issn.1000-6850.2014-2200.

    Pang S J, Zhang P, Jia H Y, et al. Research on soil ecological stoichiometry under different forest types in Northwest Guangxi[J]. Chinese Agricultural Science Bulletin, 2015, 31(1): 17−23. doi: 10.11924/j.issn.1000-6850.2014-2200.
    [6]
    Tian H, Chen G, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data[J]. Biogeochemistry, 2009, 98(1−3): 139−151.
    [7]
    吴建平. 黄土丘陵区典型退耕植被土壤化学计量特征[D]. 杨凌: 西北农林科技大学, 2016.

    Wu J P. Soil stoichiometry under conversion of grain to green program in loess hilly region[D]. Yangling: Northwest A&F University, 2016.
    [8]
    赵佰礼, 穆兴民, 高鹏, 等. 黄土丘陵沟壑区不同退耕草地土壤水分研究[J]. 水土保持研究, 2019, 26(4):111−115.

    Zhao B L, Mu X M, Gao P, et al. Study on soil moisture in two returning farm-land patterns in gully and hilly region of the Loess Plateau[J]. Research of Soil and Water Conservation, 2019, 26(4): 111−115.
    [9]
    刘晶, 徐少君, 刘丽芬. 不同退耕方式对豫西黄土丘陵区土壤颗粒有机碳含量的影响[J]. 河南农业科学, 2015, 44(5):72−76.

    Liu J, Xu S J, Liu L F. Effect of different reafforestation patterns on soil particulate organic carbon content in loess hilly region of western Henan[J]. Journal of Henan Agricultural Sciences, 2015, 44(5): 72−76.
    [10]
    陈青松, 李婷, 张世熔, 等. 城乡交错带土壤氮素空间分布及其影响因素[J]. 生态学报, 2016, 36(8):2133−2141.

    Chen Q S, Li T, Zhang S R, et al. Spatial distribution of soil nitrogen in an urban-rural fringe and its influencing factors[J]. Acta Ecologica Sinica, 2016, 36(8): 2133−2141.
    [11]
    邢丹, 肖玖军, 王晓红, 等. 石漠化区退耕植桑地土壤养分与生态化学计量特征[J]. 西南农业学报, 2018, 31(7):1436−1443.

    Xing D, Xiao J J, Wang X H, et al. Nutrients and ecological stoichiometry characteristics of soil from returning farmland to mulberry field in stony desertification area[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(7): 1436−1443.
    [12]
    陈鹏, 郭建英, 董智, 等. 达拉特旗砒砂岩裸露区退耕还林土壤生态化学计量分布[J]. 中国水土保持科学, 2020, 18(1):25−34.

    Chen P, Guo J Y, Dong Z, et al. Eco-stoichiometric distribution of soil under grain for Green Project in Pisha sandstone exposed area of Dalad banner[J]. Science of Soil and Water Conservation, 2020, 18(1): 25−34.
    [13]
    梁爱华, 韩新辉, 张扬, 等. 纸坊沟流域退化土壤碳氮关系对植被恢复的时空响应[J]. 草地学报, 2013, 21(5):842−849. doi: 10.11733/j.issn.1007-0435.2013.05.002.

    Liang A H, Han X H, Zhang Y, et al. Spatio-temporal response of soil carbon and nitrogen relation to the process of vegetation restoration in the gully region of Loess Plateau[J]. Acta Agrestia Sinica, 2013, 21(5): 842−849. doi: 10.11733/j.issn.1007-0435.2013.05.002.
    [14]
    Li C, Zhao L, Sun P, et al. Deep soil C, N, and P stocks and stoichiometry in response to land use patterns in the loess hilly region of China[J]. PLoS ONE, 2016, 11(7): e0159075. doi: 10.1371/journal.pone.0159075.
    [15]
    Fu B, Chen L, Ma K, et al. The relationships between land use and soil conditions in the hilly area of the Loess Plateau in northern Shaanxi, China[J]. Catena, 2000, 39(1): 69−78. doi: 10.1016/S0341-8162(99)00084-3.
    [16]
    王莉, 林莎, 李远航, 等. 青海大通不同林地类型林下植被与土壤水分的关系[J]. 中国水土保持科学, 2019, 17(5):25−35.

    Wang L, Lin S, Li Y H, et al. Relationship between understory vegetation and soil moisture in different forest types in Datong, Qinghai Province[J]. Science of Soil and Water Conservation, 2019, 17(5): 25−35.
    [17]
    Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J]. Annual Review of Earth and Planetary Sciences, 2017, 45: 223−243. doi: 10.1146/annurev-earth-063016-020552.
    [18]
    林莎, 贺康宁, 王莉, 等. 基于地统计学的黄土高寒区典型林地土壤水分盈亏状况研究[J]. 生态学报, 2020, 40(2):728−737.

    Lin S, He K N, Wang L, et al. Soil moisture surplus and loss of typical forestland in loess alpine area by the geostatistical analyst method[J]. Acta Ecologica Sinica, 2020, 40(2): 728−737.
    [19]
    刘若莎, 王冬梅, 李平, 等. 青海高寒区典型人工林植物多样性、地上生物量特征及其相关性[J]. 生态学报, 2020, 40(2):692−700.

    Liu R S, Wang D M, Li P, et al. Plant diversity, ground biomass characteristics and their relationships of typical plantations in the alpine region of Qinghai[J]. Acta Ecologica Sinica, 2020, 40(2): 692−700.
    [20]
    刘凯, 贺康宁, 王先棒. 青海高寒区不同密度白桦林枯落物水文效应[J]. 北京林业大学学报, 2018, 40(1):89−97.

    Liu K, He K N, Wang X B. Hydrological effects of litter of Betula platyphylla forest with different densities in alpine region, Qinghai of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 89−97.
    [21]
    王志齐, 杜兰兰, 赵慢, 等. 黄土区不同退耕方式下土壤碳氮的差异及其影响因素[J]. 应用生态学报, 2016, 27(3):716−722.

    Wang Z Q, Du L L, Zhao M, et al. Differences in soil organic carbon and total nitrogen and their impact factors under different restoration patterns in the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2016, 27(3): 716−722.
    [22]
    李平, 王冬梅, 丁聪, 等. 黄土高寒区典型植被类型土壤入渗特征及其影响因素[J]. 生态学报, 2020, 40(5):1610−1620.

    Li P, Wang D M, Ding C, et al. Soil infiltration characteristics and its influencing factors of typical vegetation type in loess alpine region[J]. Acta Ecologica Sinica, 2020, 40(5): 1610−1620.
    [23]
    刘运新, 陈之凤, 廖徯苏, 等. 大通县志[M]. 西宁: 青海人民出版社, 2020.

    Liu Y X, Chen Z F, Liao X S, et al. Datong County annals[M]. Xining: Qinghai People’s Publishing House, 2020.
    [24]
    鲍士旦. 土壤农化分析[M]. 3 版. 北京: 中国农业出版社, 2000.

    Bao S T. Soil agrochemical analysis [M]. 3rd ed. Beijing: China Agriculture Press, 2000.
    [25]
    孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J]. 生态学杂志, 2020, 39(3):766−774.

    Sun Q, Wang B, Zhou H P, et al. Spatial variation of ecological stoichiometry of soil C, N and P in a small catchment of loess hilly area[J]. Chinese Journal of Ecology, 2020, 39(3): 766−774.
    [26]
    李柏桥, 付玉, 李光录, 等. 退耕年限与方式对土壤团聚体稳定性及有机碳分布的影响[J]. 干旱地区农业研究, 2017, 35(3):238−244. doi: 10.7606/j.issn.1000-7601.2017.03.37.

    Li B Q, Fu Y, Li G L, et al. Effects of age and type of conversion from cropland to forest land and grassland on stability and organic carbon in soil aggregates[J]. Agricultural Research in the Arid Areas, 2017, 35(3): 238−244. doi: 10.7606/j.issn.1000-7601.2017.03.37.
    [27]
    Shi J, Cui L. Soil carbon change and its affecting factors following afforestation in China[J]. Landscape and Urban Planning, 2010, 98: 75−85. doi: 10.1016/j.landurbplan.2010.07.011.
    [28]
    Wang Q, Wang S, Huang Y. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China[J]. Forest Ecology and Management, 2008, 255: 1210−1218. doi: 10.1016/j.foreco.2007.10.026.
    [29]
    朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15):4674−4682. doi: 10.5846/stxb201212101772

    Zhu Q L, Xing X Y, Zhang H, et al. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674−4682. doi: 10.5846/stxb201212101772
    [30]
    张萍, 章广琦, 赵一娉, 等. 黄土丘陵区不同森林类型叶片−凋落物−土壤生态化学计量特征[J]. 生态学报, 2018, 38(14):5087−5098.

    Zhang P, Zhang G Q, Zhao Y P, et al. Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the loess hilly-gully region of China[J]. Acta Ecologica Sinica, 2018, 38(14): 5087−5098.
    [31]
    李俊超, 郭胜利, 党廷辉, 等. 黄土丘陵区不同退耕方式土壤有机碳密度的差异及其空间变化[J]. 农业环境科学学报, 2014, 33(6):1167−1173. doi: 10.11654/jaes.2014.06.017.

    Li J C, Guo S L, Dang T H, et al. Spatial variations in soil organic carbon density under different restoration practices in loess hilly-gully region[J]. Journal of Agro-Environment Science, 2014, 33(6): 1167−1173. doi: 10.11654/jaes.2014.06.017.
    [32]
    Liu X, Ma J, Ma Z W, et al. Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China[J]. Catena, 2017, 150: 146−153. doi: 10.1016/j.catena.2016.11.020.
    [33]
    王建林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳氮比的分布特征[J]. 生态学报, 2014, 34(22):6678−6691.

    Wang J L, Zhong Z M, Wang Z H, et al. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinghai Tibetan Plateau[J]. Acta Ecologica Sinica, 2014, 34(22): 6678−6691.
  • Related Articles

    [1]Fan Shuxin, Li Kun, Zhang Mengyuan, Xie Yafen, Dong Li. Effects of micro scale underlying surface type and pattern of urban residential area on microclimate: taking Beijing as a case study[J]. Journal of Beijing Forestry University, 2021, 43(10): 100-109. DOI: 10.12171/j.1000-1522.20200256
    [2]Geng Hongkai, Wei Xiao, Zhang Mingjuan, Li Qingwei. Influence of vegetation and architecture on microclimate based on Envi-met: a case study of Nanjing Agricultural University[J]. Journal of Beijing Forestry University, 2020, 42(12): 115-124. DOI: 10.12171/j.1000-1522.20190418
    [3]WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204
    [4]WANG Hui, HE Kang-ning, XU Te, LIU Yu-juan, LIU Ying, ZHANG Xue. Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(8): 1-7. DOI: 10.13332/j.1000-1522.20140457
    [5]ZHAN Hui-juan, XIE Wei-jia, SUN Hao, HUANG Hua-guo. ENVI-met model; sensitivity analysis; three-dimensional temperature field of vegetated scenes[J]. Journal of Beijing Forestry University, 2014, 36(4): 64-74.
    [6]LI Zi-wei, HUAI Yong-jian, FU Hui.. Virtual plant growth simulation based on illumination model.[J]. Journal of Beijing Forestry University, 2013, 35(4): 81-86.
    [7]SONG Fu-qiang, KANG Mu-yi, YANG Peng, CHEN Ya-ru, LIU Yang, XING Kai-xiong.. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 72-80.
    [8]SUN Qing-yan, YU Xin-xiao, HU Shu-ping, XIAO Yang. SWAT model-based runoff simulation in Banchengzi Reservoir Catchment,Beijing[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 148-154.
    [9]ZHOU Rui, GE Jian-ping, YU Bo, LIU Li-juan, WU Ji-gui. Simulation of forest dynamics at Songshan Mountain, Beijing[J]. Journal of Beijing Forestry University, 2007, 29(1): 19-25. DOI: 10.13332/j.1000-1522.2007.01.004
    [10]XU Xiang-zhou, LIU Da-qing, ZHANG Hong-wu, DONG Zhan-di, ZHU Ming-dong. Laboratory rainfall simulation with controlled rainfall intensity and drainage[J]. Journal of Beijing Forestry University, 2006, 28(5): 52-58.
  • Cited by

    Periodical cited type(7)

    1. 蔡志勇,孙龙,孙家宝. 大兴安岭森林可燃物燃烧危险性评估. 东北林业大学学报. 2025(01): 73-78 .
    2. 李维伟,杨雪清,张一鸣,冯昕,王博,杜建华,陈锋,刘晓东. 基于小班尺度的北京市密云区森林火灾危险性评价. 北京林业大学学报. 2024(02): 75-86 . 本站查看
    3. 莫凡,郭慧,裴顺祥,吴迪,吴莎,辛学兵. 野外-城市界域森林火险时空演变趋势及火险等级划分. 生态学报. 2024(14): 6232-6242 .
    4. 鲜明睿,马敏杰,杨志林,彭永俊,李继品. 云南红河州森林火灾风险评估研究. 森林防火. 2024(04): 26-30 .
    5. 刘嘉雷,田晓瑞,宗学政,彭玉娴,赵文太. 大兴安岭森林火灾风险评估. 陆地生态系统与保护学报. 2023(03): 77-88 .
    6. 刘金龙,岳彩荣,汤明华,阳丽. 基于昭通市森林火灾风险普查数据的阔叶林可燃物载量分析. 消防界(电子版). 2023(05): 150-152 .
    7. 韩喜越,王晓迪,崔晨曦,单延龙,于渤,尹赛男,曹丽丽. 内蒙古大兴安岭根河林业局主要可燃物类型地表细小可燃物特征及其影响因素. 中南林业科技大学学报. 2023(12): 94-103 .

    Other cited types(2)

Catalog

    Article views (1566) PDF downloads (80) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return